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Abstract
It has been hypothesized that one of the main reasons evolution has been able to produce such impressive
adaptations is because it has improved its own ability to evolve – “the evolution of evolvability”. Rupert
Riedl, for example, an early pioneer of evolutionary developmental biology, suggested that the evolution of
complex adaptations is facilitated by a developmental organization that is itself shaped by past selection
to facilitate evolutionary innovation. However, selection for characteristics that enable future innovation
seems paradoxical: natural selection cannot favor structures for benefits they have not yet produced; and
favoring characteristics for benefits that have already been produced does not constitute future innovation.
Here we resolve this paradox by exploiting a formal equivalence between the evolution of evolvability
and learning systems. We use the conditions that enable simple learning systems to generalize, i.e.,
to use past experience to improve performance on previously unseen, future test cases, to demonstrate
conditions where natural selection can systematically favor developmental organizations that benefit
future evolvability. Using numerical simulations of evolution on highly epistatic fitness landscapes, we
illustrate how the structure of evolved gene regulation networks can result in increased evolvability capable
of avoiding local fitness peaks and discovering higher fitness phenotypes. Our findings support Riedl’s
intuition: Developmental organizations that “mimic” the organization of constraints on phenotypes can
be favored by short-term selection and also facilitate future innovation. Importantly, the conditions that
enable the evolution of such surprising evolvability follow from the same non-mysterious conditions that
permit generalization in learning systems.

Introduction
The ability of natural populations to exhibit adaptation depends on the production of suitable phenotypic
variation that natural selection can act on. Such variability in turn depends, amongst other things, on the
properties of the genotype–phenotype map or the organization of developmental processes that constrain
and bias the distribution of possible phenotypic variants. Contemporary evolutionary developmental
biology recognizes that developmental organization is both a product of natural selection and a factor
that can significantly alter subsequent evolutionary outcomes (1–4). It is therefore clear that natural
selection can produce heritable changes that modify the ability to evolve – a phenomenon called the
“evolution of evolvability” (3, 5, 6). But can natural selection systematically improve its own ability
to evolve? It has been argued that natural selection increases evolvability over time and that this is
important in explaining the amazing diversity and complexity of the natural world (1, 2, 7). Yet, how
natural selection, which operates only on short-term fitness differences, can improve long-term evolvability
remains one of the most important, open questions in evolutionary biology (1–3, 5–12).

Rupert Riedl, an early pioneer of evo–devo research, provided key concepts and ideas on the topic
of evolvability. He suggested that the evolution of complex adaptations is facilitated by developmental
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architectures that are organized by natural selection to “mimic” or “imitate” the functional constraints on
phenotypes (1–3, 13). However, his ideas have not been previously demonstrated in an explicit mechanistic
model. Such a model needs to explain exactly what form such imitation takes and, more challengingly,
explain why imitating the constraints experienced in the past facilitates evolutionary innovation in the
future. We provide a resolution to this problem by drawing a formal analogy with well-established
knowledge from another discipline; namely, learning theory. A simple analogy between learning and
evolution has been noted many times (14, 15), but the link has recently been formalized and deepened
extensively (16–22). Here we argue that Riedl’s notion of an imitatory developmental organization is
directly analogous to a learning system that internalizes a model of its environment, and the link with
learning also provides the missing explanatory component and mechanistic principles to demonstrate how
this facilitates future innovation. Specifically, in learning systems the idea that past experience can be
used to generalize to future, previously unseen, test cases is not at all paradoxical. This enables us to
update Riedl’s notion of development that imitates to a process of development that innovates in a simple
but predictable manner.

Generalization and evolvability
Here, we develop the intuition that evolvability is to evolution as generalization is to learning (21, 22).
That is, learning without generalization is essentially just remembering what you have already seen; it
is obvious that evolution by natural selection can do this in the sense that genotype frequencies are
determined by past selection. But evolvability suggests an ability to go beyond this; not merely to favor
the phenotypes that have already been rewarded but to facilitate innovation – an ability to produce new
phenotypes that are fit even though they have not been previously subject to selection. The evolution of
a high mutation rate in a rugged fitness landscape is potentially a simple way to provide this – implicitly
exploiting the prediction that high degrees of epistasis in the past might be indicative of high degrees of
epistasis in the future. But a parameter that simply controls the amount of variability (e.g., mutation
rate) has little or no ability to accumulate specific information from past selection and is, in any case,
not easy to evolve (23). Learning systems show that predicting the future (in specific ways) from past
experience is possible in simple mechanistic systems. Learning systems do not really “see the future”, of
course; they are simply finding underlying structural regularities that are invariant over time (16). For
this to be non-trivial, it is essential that the future is not simply the same as the past, but rather shares
invariant structural properties – properties that are, in some sense, beneath the surface. In this paper, by
transferring existing knowledge from learning systems, we explore the conditions where natural selection
can achieve this same type of generalization and thus demonstrate evolvability that facilitates innovation.
Unlike models based on the evolution of mutation rates that attempt to increase evolvability simply by
enabling more (random) variability, our models increase evolvability by enabling “smarter” variability;
i.e., by evolving developmental organizations that create a distribution of variants with specific adaptive
structure.

To learn structural regularities requires an ability to accumulate information from multiple past ex-
amples. A learning system that models each feature independently cannot do this because each new
example overwrites the features of the previous example (to the extent that they are different). This
is analogous to an evolutionary system where phenotypes are directly encoded by genotypes – i.e., each
phenotypic trait is controlled by a single gene, also known as “one-to-one”. Given that genetic variation
is undirected, a one-to-one mapping produces undirected variability in phenotypic characteristics and is
therefore incapable of “remembering” more than one thing (except in the degenerate sense of representing
a simple average), or generalizing (20, 21). The evolutionary significance of this is that it is unable to use
information from past selective environments to modify the future response to selection except by chang-
ing its current phenotype – there is no possibility of representing tacit information from past selection.
In contrast, a learning system that generalizes requires an ability to represent the underlying structural
regularities of a problem domain, e.g., to observe which features “go together” in a set of examples, and
this requires a more flexible input–output mapping. Representing structural relationships between mul-
tiple features of observed solutions enables a learning system to exploit similarities between multiple
past solutions (and possible future solutions) even though their individual features may be different or
contradictory.

This is analogous to a G–P map that constrains and biases the combinations of phenotypic traits
produced by genotypes, e.g., via a gene-regulatory network. This is capable of representing information
about structural regularities observed in past selected phenotypes and generalizing by facilitating pheno-
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typic variation which reflects the regularities represented within the network (17, 20). Recent work shows
that it is possible for a gene-regulation network to represent information about structural regularities
observed in past selected phenotypes and also describes in detail how information is introduced into such
networks by past selection in the same way that an associative learning system acquires information from
experience (17). Specifically, this work shows that the effect of natural selection on mutations that change
the strength of connections in a gene-regulation network is formally equivalent to learning mechanisms
that alter the strength of synaptic connections in a neural network (17). The potential for neural networks
to generalize via such simple learning mechanisms is well characterized. Thus, a simple G–P mapping
based on gene-regulatory interactions is capable of representing such correlations in the same way that a
neural network is. Here we show for the first time that this ability of natural selection to shape the organi-
zation of gene-networks can improve evolvability on rugged fitness landscapes, enabling future evolution
to move in a modified space of phenotypes and thereby avoid local fitness peaks that prevent evolution
with one-to-one mappings from finding higher fitness phenotypes. We also show that the evolving gene
network achieves this result by creating pleiotropic interactions that mimic the structure of the epistasis,
inherent in the fitness landscape, acting on phenotypic traits, as Riedl predicted; but crucially, we also
show that it is thus capable of generalization necessary to improve future innovation. It is in this way
that natural selection is able to recognize and exploit structural regularities in the selective environment
that facilitate evolutionary innovation.

To explain this evolvability we need to explain the congruence between short-term fitness benefits
(arising from organizations that mimic the structure of selective constraints on the phenotype) and long-
term fitness benefits (i.e., an ability to innovate on rugged fitness landscapes). This is neither guaranteed
nor mysterious; it depends on the same conditions where generalization is possible in learning systems.
Specifically, that learnable regularity is present in the training data. To demonstrate this, we utilize
the observation that the phenotypes at local peaks in a multi-peaked epistatic fitness landscape are not
arbitrarily different to one another (except in special cases). It is, of course, possible to construct truly
random landscapes where high-fitness phenotypes have no shared commonalities. But this will not be the
case whenever phenotypes have fitnesses that result from a sum of low-order epistatic fitness contributions
(e.g., pairwise epistasis, but strictly, anything less than order-n epistasis where n is the number of traits).
In general, phenotypes at local fitness peaks share common structural regularities because they derive
from the same set of underlying epistatic constraints (24, 25). The presence of such regularities is of no use
to natural selection with a one-to-one G–P map, since such a map is incapable of representing or exploiting
them. But we show that evolution on such a landscape, using phenotypes produced by an evolving gene-
regulation network, can “learn” to exploit these regularities. This learning–evolution analogy is more than
the simple idea that selection “rewards” fit phenotypes by increasing their frequency in the population.
Rather this is a formal functional equivalence meaning that natural selection has the ability to induce an
internal structural organization (in this case, via the evolution of gene-regulatory interactions) that mimics
the structure of the epistasis acting on phenotypes. This “internalized model” of the environment produces
phenotypes that respect the epistatic interactions acting on those phenotypes and is thus enriched for
fit phenotypes – including novel phenotypes. This causes future evolutionary trajectories to be biased
toward parts of the fitness landscape with structural regularities that are “familiar” from past evolutionary
experience. This has the effect of causing future evolution to avoid low-fitness peaks (because they have
less structural commonality with high-fitness phenotypes experienced in the past) and thus find high-
fitness phenotypes faster and more reliably. We demonstrate this by comparing evolutionary trajectories
with more evolved and less evolved gene networks, from many different starting points in phenotype
space, and measuring the long-term fitnesses they attain. We are particularly interested in cases where
evolutionary trajectories with a more evolved mapping systematically arrive at different local optima of
higher fitness than evolutionary trajectories with a less evolved mapping. Passing this test is important
because it indicates that the more evolvable mapping enables the discovery of new high-fitness phenotypes
that cannot be discovered with the less evolvable mapping (unless evolution moves against selective
gradients or depends on multiple specific genetic mutations occurring simultaneously). Accordingly, we
compare multi-generation evolutionary trajectories with different G–P maps: (a) a direct encoding where
the phenotype is the same as the genotype (i.e., a “one-to-one” or identity mapping); (b) evolved G–P
maps at different stages of evolution. Specifically, the direct encoding has no gene-regulatory interactions
such that each gene controls exactly one phenotypic trait, whereas the evolved mappings introduce gene-
regulatory interactions. We assess the fitness levels attained and whether different fitness peaks (with
phenotypes of higher fitness) are discovered in a multi-peaked fitness landscape.

Recent investigations into the evolution of evolvability have demonstrated that short-term natural
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selection can increase robustness (26–28), increase the rate of adaptation under directional selection (29),
re-evolve previously evolved phenotypes more quickly (30), and enable evolution to track changes in the
environment more rapidly (30–32). Some of this work is evidence of the imitatory features that Riedl
described, e.g., modularity, or other structural features, that mimic the structure of the environment (32,
33). Clune et al., in work on the evolution of neural networks, go further to demonstrate that conditions
favoring modular networks not only mimic the modularity of the task environment but also facilitate
more effective evolvability and superior evolutionary outcomes. Here, investigating evolvability in a gene
network (rather than a neural network), we show that there is sufficient learnable regularity in much
more general fitness landscapes (without designed-in modularity). More importantly, we explain the
mechanism by formally linking the conditions for this result to generalization in learning theory.

Evolvability on rugged fitness landscapes
To understand how evolutionary trajectories, starting from the same phenotype on the same fitness
landscape, can be different from one another, we need to understand (a) that different G–P maps can
produce different distributions of phenotypic variation (1–11); and (b) how this distribution interacts
with selection to determine the direction of movement in phenotype space (34, 35).

Given that genetic variation is undirected, a one-to-one mapping produces undirected variability
in phenotypic characteristics also, and evolutionary trajectories are thus shaped by selective gradients
only. Mappings that produce non-uniform phenotypic distributions may cause differences in subsequent
evolutionary trajectories (34, 35). Under constant directional selection, if phenotypic variability in the
direction of selection is decreased, this will decrease the rate of adaptation. Conversely, if the phenotypic
variation in the direction of selection is increased this will accelerate evolution (29). Pavlicev et al. (29)
showed that the effect of short-term selection is to favor genetic lineages that increase phenotypic variation
in the direction of selection precisely because they accelerate adaptation in this manner. Moreover, biases
in the distribution of phenotypic variants can not only increase or decrease the rate of adaptation but
can also alter the direction of evolutionary trajectories through phenotype space (34, 35). In much the
same way that a keel on a sailing boat can make the direction of travel differ from the direction of the
wind, a biased phenotypic distribution, by making evolutionary change in some dimensions easier than
others, can make the path of evolutionary change differ from the current direction of selection and thus
cause evolutionary trajectories to visit different regions of phenotype space.

In any single-peaked landscape, this may not alter long term evolutionary outcomes; assuming that
a G–P map is not so constrained as to remove any of the necessary variability altogether, evolution will
ultimately attain the same phenotypic peak and hence the same fitness in the long term, whether it be
via a direct or circuitous route (34, 35). In a multi-peaked fitness landscape, if a G–P map changes
the regions of phenotype space that are explored, this causes natural selection to find different fitness
peaks – thus altering long-term evolutionary outcomes. Figure 1 demonstrates this using data from the
experiments that follow. The figure shows how evolution over a fixed set of possible mutations given one
G–P map quickly exhausts the production of beneficial variation and becomes trapped at a local optimum
in the adaptive landscape (Figure 1a). Nonetheless evolution over the same set of possible mutations with
a different G–P map continues to produce adaptive variations that ultimately lead to superior regions of
phenotype space (Figures 1b and 1c).

To explain a systematic mechanism for the evolution of evolvability of this type requires that we
understand the kind of knowledge that natural selection can “learn” from past experience (i.e., the kind
of information that the organization of the G–P map can hold) and its correspondence with the knowledge
that is needed to evolve high-fitness phenotypes. This is what Riedl could not provide. Here we show
that when the G–P map is defined by a network of gene-regulatory connections, it is capable of learning
the structure of pairwise epistatic interactions in the fitness landscape. This biases the distribution of
phenotypes produced by genetic mutations to suppress the expression of trait combinations that conflict
with high-fitness phenotypes and amplify the expression of trait combinations that are compatible with
high-fitness phenotypes. These biases are a simple way of generalizing the information (combinations of
phenotypic traits) found at multiple easy-to-find local peaks of average (for peaks) fitness, it is thereby
able to predict the location of much rarer local peaks of exceptionally high fitness.
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Figure 1. Highly evolved G–P maps enable microevolution to find fitter phenotypes by changing the fitness
landscape. The fitness landscape for a set of genetic mutations is modified by evolved changes in the genetic
background defining the genotype–phenotype (G–P) map. Each mapping determines the phenotype (i.e., expres-
sion profile of 100 gene products) produced by a set of 100 genes. The initial mapping is a direct encoding (with
no gene-regulatory interactions) such that each of the phenotypic traits is determined by the state of exactly
one of the genes. Genetic mutations under this “one-to-one” or “identity mapping” have no pleiotropy or pheno-
typic epistasis, but the adaptive landscape exhibits widespread epistasis for fitness. The other mappings are the
result of evolutionary changes (at other genetic sites) that introduce gene-regulatory interactions. In each case
the surface shown depicts the same two-dimensional cross-section through the highly-epistatic high-dimensional
fitness landscape (each dimension is a particular cross-section through a subspace of genotypes; see Cross-sections
through genotype space). This cross-section maintains the property that local optima on this surface (i.e., where
all neighboring points are lower in fitness) are also true local optima in the original high-dimensional fitness land-
scape. The two globally optimal phenotypes in this landscape are located at opposite corners of this cross-section.
Fitness reported is in logarithmic scale. (a) With the one-to-one G–P map, the space of phenotypes corresponds
directly to the underlying space of genotypes. Trajectories show simulation data of paths on the fitness surface
taken by evolution using this direct encoding (start points drawn randomly in genotype space fall in low fitness
regions of this surface with high probability). In this rugged fitness landscape these trajectories quickly become
trapped when a local optimum is encountered. Evolution fails to find a global optimum in 1000 attempts. Three
example evolutionary trajectories are shown (black circles denote starting locations); to enhance visualization,
trajectories which revisit previously seen phenotypes via neutral changes are not shown. (b) The fitness surface
with a moderately evolved G–P map. As the genetic background defining the parameters of the G–P map (i.e.,
evolving gene-regulatory interactions) evolve under natural selection, the phenotypes produced over the same
space of 100 genes change (in predictable ways, see text) and thus have different fitnesses. Some points in geno-
type space which were local optima in (a) are no longer local optima in (b), and thus evolutionary trajectories
from the same starting points as (a) sometimes discover higher fitness phenotypes. This is because the evolved
regulatory interactions change the phenotypic neighborhood in a way which enables evolutionary trajectories to
follow fitness gradients to different local optima. (c) The fitness surface with a highly evolved G–P map. This
mapping produces phenotypes that can always be improved by small mutations, and evolutionary trajectories
thus reliably find the global optima when starting from any point (1000 random starting positions tested, all
succeed). (Continued on next page.)
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Figure 1. (Continued from previous page.) (d) Comparing the fitness effects of movements in the same genetic
space given different mappings (enlarged area and line plots). The plot shows one trajectory from (a) (red) and one
trajectory from (c) (blue), both overlaid on the fitness surface resulting from the G–P map in (a). The depicted
evolutionary trajectory (red) gets stuck at a local optimum with low fitness. Trajectories through genotype space
with the evolved mapping in (c) (blue) include mutations that would have been deleterious with the direct encoding
(see fitness decrease in dashed blue line plot). However, these genetic mutations are accepted by natural selection
because they produce beneficial changes to phenotypes given the evolved mapping (see monotonically increasing
fitness in blue line plot). Unlike the case with the one-to-one mapping, mutations that decrease the genetic
distance to the fittest genotype always increase fitness with the evolved mapping. The evolved mappings achieve
this via the evolution of regulatory interactions that bias the distribution of phenotypes produced by genetic
mutations such that the expression of trait combinations that conflict with high-fitness phenotypes is suppressed
and the expression of trait combinations that are compatible with high-fitness phenotypes is amplified.

Experimental set-up
We simulate the evolution of a GRN controlling a set of phenotypic traits, P, via a set of gene-expression
potentials (17) (see Gene-regulation network). The genotype defines the embryonic state of each gene
expression potential with a vector, G, and an interaction matrix, B, whose elements represent the mag-
nitude and sign of the regulatory interactions between one gene and another in the GRN (17). In the
absence of evolved regulatory interactions, B, the G–P map is one-to-one, and the sign and magnitude
of elements in P correspond directly to the elements of G. Thus, in the absence of B, mutations to G
produce a uniform ball of variation in phenotype space on average. In the presence of evolved regulatory
interactions, G is mapped into an adult phenotype using a non-linear, recurrent developmental process
defined by B.

Developmental constraints, B, are assumed to evolve slowly. Specifically, the correlations between
traits, represented by the interaction matrix B, are assumed to evolve slowly relative to changes in the
magnitudes of the traits themselves, represented by the elements of G (e.g., the number of mutational
sites affecting the expression level of a single gene is greater than the number of sites affecting its co-
regulatory interaction with another specific gene (17)). We refer to the timescale over which developmental
constraints evolve as “deep” evolutionary time, and the more rapid timescale of evolution given those
developmental constraints as microevolutionary time. We are interested in how the genetic constraints
of the GRN (defined by B) change over deep time and how they modify the mapping between G and Pa,
the adult phenotype; and in particular, how the distribution of phenotypes produced under mutations to
G (for a given B) thus have the potential to modify microevolutionary trajectories through phenotype
space.

It is not possible for evolution, or any other adaptive process, to infer the underlying structure of
fitness a landscape from a single point in that landscape. The prior work of Alon and colleagues thus
elaborates the idea that varying goals – changing repeatedly from one selective target to a different
(but structurally similar) selective target – enhances the evolution of evolvability to previously seen
environments (30, 32, 33, 36) and in some cases (e.g., modularly-varying goals) produces generalization
to previously-unseen environments (17, 32, 33, 36). In that work it was necessary to hand-design a
family of single-peaked selective landscapes sharing common structural regularities. Instead we utilize
the observation that the local peaks present in a single multi-peaked landscape naturally share common
structural regularities because they derive from the same set of underlying epistatic constraints (24, 25).
This does not depend on any explicit modularity or other contrivance in the problem structure. This
also has the advantage that the fitnesses of different local peaks are comparable because they are on the
same landscape. This is important because it enables us to assess not merely whether evolution evolves
a given phenotype more quickly, but also whether evolution can find a different phenotype that is fitter.
This ability cannot be assessed when the landscape (at any one time) is single-peaked.

Thus, rather than changing between multiple single-peaked fitness landscapes, we retain the con-
dition of variable selective pressures via a different method; namely, repeated exposures to the single,
multi-modal fitness landscape (e.g., a population is repeatedly, but intermittently, exposed to a stress
such as an alternate habitat, toxin, or predator population). As per Kashtan et al. (30), this creates
a scenario in which evolution alternates between a “target” selective environment (in this case, multi-
peaked) and a “null” selective environment where evolution is neutral.1 Interim periods, where selection

1Kashtan et al. found that alternating between the target and null environments showed no speedup in most cases
because there were no structural similarities between the two environments for the developmental constraints to internalize.
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on the relevant traits is neutral, allows their values to drift and causes the next exposure to start from
a different phenotype (i.e., a different location in the fitness landscape). We term each (re-)evolution in
the target landscape a microevolutionary “episode” and we approximate the effects of exposure to the
null environment by randomizing G between episodes (but retaining the slower-evolving developmental
constraints, B). In this manner, the slow evolution of developmental constraints responds to the pheno-
typic correlations selected over a distribution of different local peaks in a multi-peaked fitness landscape.
Selection occurring at multiple local peaks of multi-modal fitness landscape is conceptually similar to the
notion of selection occurring in multiple, single-peaked fitness landscapes (i.e., the multiple landscapes
can be viewed as different local peaks of the same underlying fitness landscape) – but methodologically
the former has the advantage that we do not need to hand-design structural similarity (e.g., modularity)
into multiple phenotypic targets.

We examine two different classes of fitness landscapes each defined by the super-position of many
pairwise sign-epistatic interactions. Natural fitness landscapes contain widespread epistasis (37) (pairwise,
or “order two”, epistasis being the minimal case), including sign epistasis – i.e., where a change in one trait
may be either beneficial or deleterious depending on the value of another trait (38). Multiple epistatic
interactions can create epistatic constraints that are difficult or impossible to resolve simultaneously (we
say that an “epistatic constraint” between two traits is “resolved” if the fitness contribution conferred
by their epistatic interaction is maximized; see Epistatic fitness landscapes). Local fitness peaks occur
when any change that resolves one epistatic constraint causes one or more other constraints, of greater
total fitness effect, to be violated, resulting in a net decrease in fitness. Different fitness peaks in the
resultant fitness landscape tend to resolve different (but not unrelated) subsets of epistatic constraints
and, in general, confer different fitness values.

A least-assumptions model of multi-modal landscapes is provided by random constraints, making no
assumptions about the organization of low-order epistatic interactions. Note that although the organiza-
tion of the epistatic interactions is random, the fact that they are low-order (in this case, pairwise) means
that the resultant fitness landscape, although highly multi-modal, is not arbitrary (25). Whether it is,
in principle, possible to simultaneously resolve all epistatic constraints depends on the consistency of the
constraints in a problem (39) – i.e., in a consistent problem, there exists a configuration that resolves all
constraints. With random constraints, consistency is low; many epistatic constraints cannot be simulta-
neously resolved by any phenotypic configuration. Prior work with optimization using neural network
learning (24) shows that the consistency of constraints will influence the success of learning (here, the abil-
ity of evolution to improve evolvability). Accordingly, in a second landscape class, consistent constraints,
we control consistency by making all constraints consistent with a particular target phenotype. Again
this landscape exhibits many locally optimal configurations where, although there exist higher-fitness con-
figurations, fitness improvements can require changes to many traits simultaneously. Like the randomly
organized problem, this describes a scenario where high-fitness configurations over subsets of traits are
incompatible with high-fitness configurations over different but overlapping subsets of traits. Globally
optimal configurations where all constraints are resolved exist in the consistent case (but not the random
case) but are nonetheless very rare and difficult to find by incremental change (in this class there are only
two configurations of 2n possible configurations that resolve all epistatic constraints simultaneously).

Thus our experiments simulate the evolution of a gene-regulation network on rugged fitness landscapes
composed of many low-order sign-epistatic interactions. We study the adaptation of developmental biases
and constraints, accumulated over multiple evolutionary episodes that visit multiple peaks on such fitness
landscapes over deep evolutionary time. Specifically, we examine the capability of natural selection to find
generalized developmental organizations that reflect the structure of these landscapes and thus modify
microevolutionary trajectories in a manner that enables evolution to find different adaptive peaks of
higher fitness.

Results
In several of the experiments that follow we compare microevolutionary episodes (from random starting
phenotypes): (a) with unbiased development, i.e., a one-to-one G–P map (created by using the identity
matrix as the regulatory interactions matrix, B); (b) with an evolved developmental process, i.e., a G–P

In our case, however, structural similarities do exist; not between the null and target environments, but between the different
local peaks of the single target environment. The null environment is important, however, in enabling evolution to sample
multiple local peaks of the target fitness landscape.
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map controlled by evolved regulatory interactions (itself evolved over many past evolutionary episodes).
By comparing the end-points of these episodes we can assess whether the phenotypic distribution evolved
over deep time is causing microevolutionary trajectories to find different fitness peaks in the fitness
landscape and whether they are higher or lower in fitness.

Evolved G–P maps improve evolvability
We begin by examining the behavior of a GRN evolving on a multi-modal fitness landscape built from
either (i) consistent epistatic constraints, or (ii) random epistatic constraints. Simulations for (i) and
(ii) last for 1600 and 4000 evolutionary episodes, and each episode lasts for 5000 and 2000 generations
respectively.

We begin by taking advantage of the fact that fit and unfit phenotypes can be easily distinguished
by eye in the consistent constraints problem. We define the problem constraints to be consistent with a
recognizable image (without loss of generality, in this case, concentric squares). Constraints are defined
between neighboring pixels in the image, but finding the globally optimal phenotype requires evolution
to satisfy all these local constraints simultaneously – which is only possible by finding the target image
or its complement (see Epistatic fitness landscapes). Fitness trajectories over microevolutionary time on
the landscape with consistent epistatic constraints are shown in fig. 2a. Here we show microevolutionary
trajectories from episodes 1–5, 996–1000 and 1596–1600. The phenotypes found at the end of each
microevolutionary episode using GRNs from different stages of deep evolutionary time are shown in the
top row of fig. 2a. The fitnesses of phenotypes at the start of every microevolutionary episode are similar
both early and late in deep evolution, but we see from the end-points of earlier and later microevolution
that fitter phenotypes are found later in deep time. Early in deep evolution, phenotypes found by
microevolution have small patches that are locally consistent with the target image, but neighboring
patches do not agree, leaving unresolved constraints at the boundaries between these patches. Later in
deep evolution, microevolution can find larger patches that are consistent with the target image, i.e.,
larger subsets of constraints are being resolved simultaneously because developmental biases have learned
which combinations of traits work well together.

To further illustrate this progressive improvement in the ability to find high-fitness peaks, we plot the
fitnesses of the phenotypes found at the end of every microevolutionary episode for one instance of the
consistent and random constraints problems (figs. 2c and 2e). We find that during the evolution of the
GRN over deep time, microevolution becomes better at discovering high-fitness phenotypes. Although
the evolving GRN does not find high-fitness phenotypes reliably early in deep evolution, it slowly becomes
better at evolving. Later evolutionary episodes find better configurations by learning phenotypic corre-
lations from locally optimal phenotypes it found in the past. That is, evolution slowly internalizes the
problem structure that can be inferred from previously-visited peaks into its G–P map, and subsequent
microevolution is then biased to recreate the structures that have been learned (as shown in the top row
of fig. 2a).

To highlight the effect these evolved biases of the G–P map have on subsequent microevolution, we
compare the evolved G–P map’s behavior to that of a one-to-one G–P map (figs. 2b and 2d for the
consistent and random constraints problems respectively). With a one-to-one G–P map, past experience
cannot alter the developmental process (there is no trend over deep time) and microevolution simply
follows the fitness gradients of the fitness landscape. Although the evolving GRN and one-to-one G–P
map models find phenotypes of similar fitness early in deep evolution, the evolving GRN increases its
ability to find fit phenotypes over time (figs. 2b to 2e). This clearly illustrates that the evolved biases
and constraints in the G–P map enable evolution to find higher-fitness phenotypes than those found by
an unbiased evolutionary process (i.e., a one-to-one G–P map). This is true for both problem classes
tested, and the results are consistent over 30 independent replicates of each experiment, with 30 different
landscapes in the random constraints case (fig. 3).

The evolved G–P map avoids low-fitness local peaks in the fitness landscape
We verify that the increased evolvability of the evolved GRN is due to an ability to avoid low-fitness
local optima in the fitness landscape by comparing microevolutionary trajectories given (a) a one-to-one
G–P map; and (b) G–P maps taken from different stages of the previous experiments. We create 1000
individuals with different random G values (and hence random phenotypes) and then evolve G, using
these different G–P maps. To ensure that these differences are really caused by finding different local
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Figure 2. Evolution finds genotype–phenotype maps that improve evolvability. (a) Fitness trajectories for
the GRN over microevolutionary time on the landscape with consistent epistatic constraints. Top row in (a):
Evolution finds different phenotypes with every new evolutionary episode. With evolutionary time, evolution
learns deep structural regularities common to the phenotypes it has previously encountered that allow it to increase
evolvability by generalizing and successfully resolving the epistatic constraints in the fitness landscape. Although
the fitnesses of the initial phenotypes are similar both early and late in deep evolutionary time, microevolution
at later evolutionary periods finds fitter phenotypes. The phenotypes evolve larger patches that agree with the
target image with evolutionary time. By the end, only the globally optimal phenotypes are found. Evolution over
deep time on the landscape with consistent epistatic constraints is shown in (b)–(c), and for random epistatic
constraints in (d)–(e). Each point in (b)–(e) shows the fitness of the phenotype at the end of a microevolutionary
episode (each starting from a random G phenotype). (b) and (d) show results for a one-to-one G–P map (red),
and (c) and (e) for a GRN (blue). Since there is no developmental process, and thus no G–P map that can
learn across deep evolutionary time, the distribution of locally optimal phenotypes found shows no trend during
the whole simulation. In the same landscapes, with a GRN evolving slowly over deep time, evolution becomes
better at discovering high-fitness phenotypes, eventually finding a very high-fitness phenotype from any starting
phenotype. The results shown here are consistent across 30 replicates of the experiments (fig. 3).

optima, not merely by finding the same phenotypes faster, we run each microevolutionary episode until
phenotypes show no further improvement.

We confirm that phenotypes found with the evolved G–P maps are fitter than those found with the
one-to-one G–P map, and that the longer the G–P map is evolved, the better its evolvability (figs. 4
and 5). Note that these experiments properly distinguish between individuals that are highly evolved
and individuals that have high evolvability. That is, when G is randomized, phenotypes have similar fit-
ness regardless of the G–P map. Yet, evolution with the evolved G–P maps finds fitter phenotypes (higher
end points) and it finds them faster (steeper initial slope). Such concrete evidence for the evolution of
evolvability in multi-peaked fitness landscapes has not previously been demonstrated. We also verified
that G–P maps that can achieve this level of performance are extremely rare in the space of possible G–P
maps (fig. 6). This is strong evidence that natural selection has optimized the G–P map of the evolving
GRN. Despite the fact that mutations to the G–P map are selected only on the basis of their immedi-
ate, short-term fitness consequences, the regulatory interactions that are evolved represent the problem
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Figure 3. Evolution finds G–P maps that improve evolvability. These plots show the median fitness of the
phenotypes found at the end of every microevolutionary episode (each starting from a random phenotype) over 30
replicates of the experiments. The shaded area shows the minimum and maximum fitness found by any of the 30
replicates. For the random constraints experiments, we normalize fitness for each problem instance to the range
[0, 1] with respect to the minimum and maximum fitness found by either of the two treatments. p-values shown
are from the Mann–Whitney U test. For both problem classes tested, the distribution of phenotypes found by the
one-to-one G–P map shows no trend during evolutionary time. This is because there is no developmental process,
and thus no G–P map that can learn across deep evolutionary time. When the GRN is evolved on these same
problem classes, however, the distribution of phenotypes that evolution finds shows a trend of increasing fitness.
With a GRN evolving slowly over deep time, evolution becomes better at discovering high-fitness phenotypes,
eventually finding very high-fitness phenotypes from any starting phenotype.

structure, and the evolved developmental biases facilitate the production of high-fitness phenotypes.

The evolved G–P maps internalize structural information about the selective
environment
To confirm that the evolved G–P map is internalizing structural information about the selective envi-
ronment, as Riedl suggested (1, 2), we analyze the structure of the evolved regulatory interactions after
evolving the GRN on the consistent problem. The structural information within the selective environ-
ment can be seen in terms of the epistatic interactions defined in the problem matrix (fig. 7, first frame;
white and black for + and − epistatic interactions between gene i and gene j respectively, grey for no
interactions). In episode 1, the regulatory interactions evolved reflect the traits in the one local optimum
discovered at the end of that episode. In episode 2, a different local optimum was visited, so conflicting
regulatory interactions were evolved. Thus, interactions which existed in both phenotypes were reinforced
(black and white), whereas interactions which existed only in one phenotype were weakened (grey). With
evolutionary time, after a number of different local optima have been visited, regulatory interactions
closely match the structural information which exists in the selective environment (episodes 100 and
800). Both positive and negative regulatory interactions have evolved along the diagonals, but the rest

10



0 0.5 1 1.5 2 2.5 3 3.5 4

·104

0

200

400

Generations (micro-evolutionary time)

F
it
ne
ss
,w

′

One-to-one G–P map
G–P map at 800 episodes
G–P map at 1600 episodes

276 460
0

200

400

600

800

1,000

Fitness, w′

O
cc
ur
re
nc
es One-to-one G–P map

G–P map at 800 episodes
G–P map at 1600 episodes

(a)

(b)

Figure 4. The evolved G–P map improves the ability of microevolution to avoid low-fitness local peaks in the
consistent constraints fitness landscape and find higher-fitness peaks. This figure shows evolution over microevo-
lutionary time, given different G–P maps, rather than only the fitnesses found at the end of microevolutionary
episodes as in fig. 2. We use G–P maps taken from the experiment shown in fig. 2c, freeze their deep evolution
(i.e., freeze the evolution of the G–P map B, but allow evolution of the genotype G), and probe the effect they
have on subsequent microevolution. We randomly initialize 1000 G vectors drawn from a uniform distribution in
the range [−1, 1] and let them microevolve for 40000 generations (instead of 5000 as in the previous experiment)
using three G–P maps: a one-to-one mapping, and two mappings taken from episodes 800 and 1600 from the
experiment shown in fig. 2c. (a) Lines show median fitness, with the shaded areas showing the minimum and
maximum fitness found by any of the 1000 individuals for every evolutionary time-step. Microevolution with the
less-evolved G–P maps is stuck on lower-fitness phenotypes, but microevolution with more-evolved G–P maps
avoids these local peaks in the fitness landscape to find different, higher-fitness phenotypes. Additionally, mi-
croevolution with the more-evolved G–P maps requires less evolutionary time to find the phenotypes it settles on
as can be seen from the steeper slope. (b) End points of (a) shown in histogram format (40 equally sized buckets).
Both evolved mappings find a fitter distribution of phenotypes than the one-to-one mapping. The evolved maps
find phenotypes that are not just of higher fitness on average, but of higher fitness than all phenotypes found
with the one-to-one G–P map.

of the regulatory interactions remain close to zero, as is the case in the problem matrix. At this stage,
the developmental architecture has successfully internalized structural information about the selective
environment.

We find that this developmental architecture serves as an intermediate phase between learning the
problem structure and finding a system of constraints that enables evolution to find the global optimum
reliably. Since we know what the globally optimal phenotype is in the consistent problem, we also
know what the optimal regulatory interaction matrix is: the matrix whose regulatory interactions match
the pixel correlations in the concentric squares pattern. In a multi-modal fitness landscape, such as
the one we use here, the phenotype found by evolution at the end of every microevolutionary episode
is, in practically every case, not the global optimum. However, the different local optima found at
the end of every microevolutionary episode provide evolution with different, partially contradictory and
partially consistent, information about combinations of phenotypic traits that are fit. Given sufficiently
many examples, the evolving GRN begins to average-out the contradictory information and amplify the
consistent information. Therefore, we hypothesize that the evolved regulatory interaction matrix will, in
the medium term, become similar to the problem matrix – because the constraints in the problem matrix
reveal themselves in the fitness landscape as the most consistent “signal” that evolution can identify (this
is the imitatory organization that Riedl described). But later, we would expect the evolved GRN to
“fill-in” entries in this matrix that were unspecified in the problem matrix – and eventually, to identify
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Figure 5. The evolved G–P map improves the ability of microevolution to avoid low-fitness local peaks in the
random constraints fitness landscape and find higher-fitness peaks. This figure shows evolution over microevo-
lutionary time, given different G–P maps, rather than only the fitnesses found at the end of microevolutionary
episodes as in fig. 2. We use G–P maps taken from the experiment shown in fig. 2e, freeze their deep evolution
(i.e., freeze the evolution of the G–P map B, but allow evolution of the genotype G), and probe the effect they
have on subsequent microevolution. We randomly initialize 1000 G vectors drawn from a uniform distribution in
the range [−1, 1] and let them microevolve for 40000 generations (instead of 2500 as in the previous experiment)
using three G–P maps: a one-to-one mapping, and two mappings taken from episodes 2000 and 4000 from the
experiment shown in fig. 2e. (a) Lines show median fitness, with the shaded areas showing the minimum and
maximum fitness found by any of the 1000 individuals for every evolutionary time-step. Although microevolution
with the less-evolved G–P maps is able to find higher-fitness phenotypes due to being allowed to microevolve for
longer (compared to the phenotypes it finds in the experiment in fig. 2), microevolution with the more-evolved
G–P maps avoids local peaks in the fitness landscape more reliably and finds higher-fitness phenotypes on average.
When comparing the slope of the trajectories, we can see that microevolution with the more-evolved G–P maps
settles on high-fitness phenotypes faster than microevolution with the less-evolved G–P maps. (b) End points
of (a) shown in histogram format (40 equally-sized buckets). Both evolved mappings find a fitter distribution of
phenotypes than the one-to-one mapping. The evolved maps find the best phenotypes found by the one-to-one
G–P map more reliably.

values that correspond to the optimal solution matrix (fig. 7, last frame). Although the global optimum
might not yet have been visited, this filling-in of values that agree with the global optimum is nonetheless
possible because these interactions are the ones that are most reliably consistent with the correlations
observed over a distribution of local optima (17).

Our data confirms that this behavior, previously studied in a learning neural network (24), also
occurs in the evolving GRN. At the end of the simulation, the evolved regulatory interaction matrix
closely resembles the addition of the problem and optimal matrices as described above (fig. 7; second
and last frames). A clear separation between positive and negative regulatory interactions persists along
the diagonals, and the rest of the regulatory interactions also evolve to up-regulate or down-regulate in a
way which is consistent with the globally optimal phenotype. The evolving G–P map thus goes beyond
internalizing structural information about the selective environment, finding a system of constraints that
enables evolution to find the global optima reliably.
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Figure 6. Natural selection has optimized the G–P map for long-term evolvability. We randomly initialize
1000 G vectors drawn from a uniform distribution in the range [−1, 1] and evaluate the adult phenotypes they
develop into using different regulatory interaction matrices. For each G vector, we randomly initialize a regulatory
interaction matrix B in different ranges and sets (see legend; x is the mean value of all magnitudes in the final,
evolved matrix coming from fig. 2c), and evaluate the phenotype G is developed into given the interaction matrix
B. Since selective pressures in the fitness landscape are symmetric and our evolved matrices are also approximately
symmetric, we force some of the regulatory interaction matrices we generate to be symmetric. For comparison,
we evaluate the adult phenotypes that are produced from the same 1000 G vectors, but using the regulatory
interaction matrix taken from the end of the experiment shown in fig. 2c. We find no significant difference
in performance between symmetric and non-symmetric randomly generated matrices. On the other hand, the
evolved G–P map develops phenotypes of higher fitness on average. This is because natural selection optimized
the G–P map of the evolving GRN. Even though it was selected for immediate, short-term fitness advantages, the
regulatory interactions that are evolved represent the problem structure, and the evolved developmental biases
facilitate the production of high-fitness phenotypes.

Evolvability evolves as a systematic by-product of short-term selection for
fitness
Here we begin to unpack how the evolution of evolvability occurs in these experiments. Since the long-
term fitness consequences cannot be the reason that natural selection evolves these highly evolvable G–P
maps, we need to identify the immediate selective pressures in operation and how they have this effect
on long-term evolvability.

To understand how short-term selective pressures affect long-term evolvability, we set G to match the
concentric squares image and evolve only the regulatory interactions B. We examine how the fitness of
the adult phenotype produced changes as the regulatory interactions evolve. Note that G has to develop
according to the regulatory interactions, B, and these interactions are initially absent and slowly evolve.
Because of that, the evolution of B has a fitness effect even though G already matches the concentric
squares image. We also examine how the developmental basin of attraction of the concentric squares
phenotype changes – i.e., the number of G vectors that map into the concentric squares phenotype.

When GRN interactions evolve they increase the fitness of the phenotype; otherwise they would not
be selected by short-term selection. But they also have an effect on the distribution of phenotypes
produced by that GRN under subsequent mutations to G. Specifically, both the fitness of the adult
phenotype and the developmental basin of attraction of the concentric squares phenotype increase with
evolutionary time (fig. 8). That is, regulatory interactions that increase immediate fitness necessarily have
the systematic side-effect of increasing the number of genotypes that map into that same phenotype. This
is because the evolved regulatory interactions reinforce correlations which exist in the current phenotype
and these correlations bias the distribution of phenotypes that can be produced by the developmental
process towards reproducing these same evolved correlations (17). In this sense, we say that the genetic
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Figure 7. The evolving G–P map goes beyond internalizing structural information about the selective environ-
ment, finding a system of constraints that enables evolution to find the global optima reliably. The first frame
shows a subset (20× 20 out of 100× 100) of the consistent problem matrix (C; see Epistatic fitness landscapes),
and frames 3–7 show visual representations of a subset of the regulatory interaction matrices at different stages
of deep evolution (also 20 × 20 subsets; white for maximally positive numbers at that episode, black for max-
imally negative numbers and greyscale for intermediate values). The second frame shows a 20 × 20 subset of
the regulatory interaction matrix we approximate evolution will evolve due to visiting a large number of local
optima and not only the global optima (see text). This set of regulatory interaction enables evolution to find the
global optima reliably. The evolved G–P maps at episodes 1 and 2 are consistent with the local optima discovered
at the end of each respective episode, but differences between the two phenotypes cause evolution to reinforce
interactions which exist in both phenotypes (black and white) while weakening interactions which exist in only
one (grey). After a number of local optima have been visited, the evolved regulatory interactions (episodes 100
and 800) closely resemble the problem matrix (first frame). Both positive and negative regulatory interactions
have evolved along the diagonals (darker and lighter colors), but the rest of the regulatory interactions remain
close to 0, as is the case in the problem matrix. At this point, the evolved G–P maps have internalized structural
information about the selective environment – i.e., what values patches of neighboring pixels should take to confer
fitness benefits, but not how these patches should be combined at the boundaries to produce the globally optimal
phenotypes. This developmental architecture serves as an intermediate phase between learning the problem struc-
ture and finding a system of constraints that enables evolution to find the global optima reliably. At the end of the
simulation (episode 1600), the evolved regulatory interaction matrix closely resembles this approximated optimal
matrix (second frame). As is the case earlier in evolution, both positive and negative regulatory interactions have
evolved along the diagonals (darker and lighter colors). However, the rest of the regulatory interactions don’t
remain close to zero, but instead evolve to up-regulate or down-regulate in a way which is consistent with the
globally optimal phenotypes.

robustness of the selected phenotype is increased – the number of G vectors that map into a specific
phenotype is increased. This increase in the developmental basin of attraction of the phenotype is
functionally equivalent to the development of an associative memory for the current phenotype (17).

This robustness does not, in itself, explain the evolution of evolvability – indeed, an inability to
produce different phenotypes opposes evolvability. But what happens to developmental basin sizes when
regulatory interactions evolve slowly over multiple selected phenotypes as in our main experiments?

Given that the sum of all basins of attraction has a fixed size (the total configuration space of G),
an increase in one basin implies a decrease in the combined size of the others. Thus, when a GRN is
evolved over a distribution of phenotypes, not all of their basins can increase indefinitely and, to first
approximation, the phenotypes that are selected for most often will eventually out-compete all other
phenotypes. However, evolving interactions store information about phenotypic correlations rather than
the specific values of individual phenotypic traits (17). Accordingly, when one basin increases others will
decrease, but the basins of phenotypes that are structurally similar to the currently selected phenotype
will reduce only a little compared to the basins of phenotypes that are structurally unrelated. Over a
distribution of selected phenotypes, the GRN learns a generalized model of those phenotypes – i.e., it
learns their correlation structure – and the phenotypes whose basins are enlarged the most are those
that agree with the most phenotypic correlations observed over that sample of selected phenotypes (see
ref. (24) for an illustration of this in neural network learning).

We use the consistent problem to confirm that as the GRN evolves, the size of the basin of local optima
decreases and the size of the basin of the global optimum increases even though the global optimum has
not yet been visited (fig. 9). This, combined with the fact that evolved regulatory interactions are
consistent with the globally optimal phenotype (fig. 7), explains how microevolutionary trajectories are
able to follow fitness gradients and find the global optimum even though phenotypes of similar fitness
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Figure 8. Selection for fitness increases the developmental basin of attraction for the target phenotype. Without
loss of generality, we make G equal to the target phenotype of the consistent constraints problem, and evolve
only the regulatory interactions under natural selection for 1600 evolutionary episodes. We measure how the
fitness of phenotypes developed from G changes with evolutionary time and also how the developmental basin
of attraction of the target phenotype changes with time. The fitness of the adult phenotype produced increases
with evolutionary time (green; left y-axis) due to the developmental interactions evolving in the direction of the
target phenotype, thus amplifying the adult phenotype’s gene expression levels (this figure does not use fitness of
discretized phenotypes; see Epistatic fitness landscapes). The proportion of the developmental basin of attraction
of the target phenotype also changes with evolutionary time. This is measured by randomly sampling the G
space (here, sample size is set to 10000 in a uniform distribution in the range [−1, 1]), developing all G vectors
using G–P maps taken from the end of every evolutionary episode, and reporting the proportion of G vectors that
develop into the target phenotype. The basin of attraction of the target phenotype increases with evolutionary
time (blue; right y-axis). The target phenotype’s basin of attraction does not see an immediate increase because
earlier in evolution the regulatory interactions are too “weak” to solely determine the adult phenotype produced.
As the regulatory interactions become stronger with evolutionary time, the basin of attraction increases. By the
end of the simulation, the basin of attraction of the target phenotype enlarges to encompass almost the entire
space, such that ≈ 90% of the sampled G vectors develop into the target phenotype.

(i.e., starting in the same place) with a one-to-one or less-evolved developmental G–P may have instead
followed fitness gradients to a local optimum (as depicted in figs. 1 and 2a).

Discussion
Our results demonstrate conditions where short-term selection adapts developmental constraints such that
they facilitate long-term adaptation on rugged fitness landscapes. This is possible when the landscape is
composed of low-order epistatic interactions because this presents structural regularities (i.e., phenotypic
correlations) that a GRN can represent and can acquire through selection. We show that evolvability is
an indirect but necessary consequence of selection for immediate, short-term fitness increases. Robustness
of the currently-selected phenotype is also a side effect of such changes. But counter to naive intuitions,
robustness does not oppose evolvability – in fact, canalization (of the right things) is necessary for
evolvability (2, 5, 6, 20). In this work we show that a GRN can evolve to favor fit phenotypic correlations,
rather than merely favoring individual phenotypic traits, if it is exposed to selection that is representative
of fit correlations over evolutionary time. And we have shown that this is the case when a GRN is
repeatedly exposed to a multi-modal fitness landscape causing it to visit a distribution of locally optimal
phenotypes. We speculate that negative frequency dependence, causing a population to continually
explore phenotype space (40), may produce similar results to the model of repeated exposures to an
otherwise static stress environment used here.

As evolved developmental biases and constraints internalize the structure of the fitness landscape,
the distribution of phenotypic variation produced by development changes to favor these correlations
(enriches for the production of phenotypes that contain these correlations). This has the consequence
that high-fitness phenotypes are found faster and with greater probability. Although natural selection
is myopic, selective pressures under these conditions result in a G–P map that acts like a longer-term
memory and allows subsequent evolution to effectively “ignore” locally optimal configurations that could
potentially trap evolution with an unbiased G–P map (Fig. 1). Thus, our results show the evolution of
long-term evolvability as a consequence of selection for immediate fitness differences.

These behaviors can be explained by simple learning concepts. If the past is a good indicator of the
future, learning from the past can improve a model’s ability to perform well in environments not previously
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Figure 9. The evolving G–P map enhances evolvability by enlarging the basins of the global optima and removing
basins for local optima. We evolve a GRN on the consistent constraints problem for 1600 episodes, and store
all G–P maps from the end of every episode. We then use a cross section through the space of G values that
starts from the global optimum (concentric squares) and passes through a number of local optima in the fitness
landscape. The genotypes in this cross-section are developed into adult phenotypes using all 1600 G–P maps
from the previous simulation, and the adult phenotypes are evaluated. The fitnesses of phenotypes developed
with each G–P map, in each cross-section, are normalized for comparison. In the case of a one-to-one map (first
frame; episode 0), the adult phenotypes produced are equal to the G vectors, and the fitness landscape is multi-
modal, meaning that evolution can get trapped on local optima. The top row shows the locally optimal adult
phenotypes produced. Over many evolutionary episodes the GRN changes. This does not change the mapping
from phenotypes to fitness, but it does change the mapping from genotypes (G) to phenotypes, as evident from
the differences in the phenotypes depicted at the top and bottom rows. Accordingly, the fitness landscape for
this cross-section through G changes over evolutionary time. Specifically, the fitness landscape produced by the
phenotypes developed from this cross-section of G becomes progressively smoother, eliminating local optima and
enlarging the basin of attraction of the global optimum. Thus the fitness landscape available to selection slowly
becomes effectively uni-modal when augmented by the evolving G–P map.

experienced. This requires, however, that natural selection has an appropriately powerful “model space”,
capable of representing the way in which phenotypes that were fit in the past are “similar” to novel
high-fitness phenotypes (21). A one-to-one G–P cannot do this unless the similarity is simply based on
Euclidean distance in phenotype space. But an evolving GRN is capable of internalizing information about
phenotypic correlations. When this is a good model of the structure present in the selective environment,
as it is when the environment contains low-order epistasis, this results in improved evolvability. More
generally, the relationship between the evolution of evolvability and generalization in learning systems
helps us understand the conditions for, and limitations of, the evolution of evolvability (20). This has
enabled us to demonstrate the first formal model for the evolution of evolvability capable of showing
and explaining the evolution of evolvability that facilitates future innovation from short term selection
pressures. Contrary to popular assertions, this is not impossible – just as predicting the future by
generalizing from past experience is not impossible in learning systems. This is an example of how the
transfer of machine learning theory to evolutionary theory (17, 19–22) has potential to demystify the
evolution of evolvability, and help us understand how it works and the conditions that enable it.
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Materials and Methods

Gene-regulation network
We simulate the evolution of a gene-regulation network using a non-linear, recurrent developmental
process, as described in our earlier work (17).

The phenotype of an individual is a gene expression profile, P, described by a set of n gene ex-
pression potentials which are assumed to control phenotypic traits, naturally represented by a vec-
tor: P = 〈P1, P2, . . . , Pn〉, P ∈ Rn. The genotype of an individual consists of two parts: a vector,
G = 〈G1, G2, . . . , Gn〉, defining the gene expression potentials of the embryonic phenotype, and the ele-
ments, bij , of an interaction matrix, B (a similar setup was used in refs. (17, 31, 41–43)). Every element of
the interaction matrix, B, represents the magnitude and sign (excitatory or inhibitory) of the interaction
between two traits – that is, whether a gene up-regulates or down-regulates another gene.

We use a non-linear, recurrent developmental process that maps a genotype to a phenotype, modeled
as follows. At developmental time-step t = 0, the embryonic phenotype is set to P(0) = G. For every
subsequent developmental time-step, the phenotype vector is updated by a non-linear transformation de-
termined by the weighted effect of each trait (or expression potential) on each other trait, (the interaction
matrix) B, and a degradation rate:

P(t+ 1) = P(t) + σ (B×P(t))− τP(t), (1)

where τ = 0.2 is the rate of degradation, and σ is a sigmoidal function (applied to all elements of the
phenotype vector) that non-linearly limits the effect of interactions. The non-linearity is modeled with
the hyperbolic tangent: σ(x) = tanh(x).

The gene expression profile of the adult phenotype determines the fitness of an organism. We define
“adult phenotype”, Pa, to be the phenotype vector after a fixed number of developmental time-steps,
tfinal = 10, has passed: Pa = Ptfinal .

Evolutionary model
All elements of both parts of the genotype, G and B, are initialized to 0 (i.e, no regulatory interactions).
Every generation, mutations are applied to G. Specifically, a single randomly chosen trait ofG is mutated
every evolutionary time-step by adding to it µ1, drawn from a uniform distribution in the range ±0.1. All
elements of G are hard-bounded in the range [−1, 1]. Mutation and selection on B is approximated with a
selection-limited model of evolution applied at the end of every evolutionary episode (see Selection-limited
evolution).

Our model operates under “strong selection, weak mutation” assumptions (44), which means that
a mutation is fixed or lost in the population before another mutation occurs. To accommodate these
assumptions, the population mean genotype is represented by a single genotype (Ḡ and B̄), which is
mapped into the population mean adult phenotype, P̄a via the developmental process. The evolution
of the population is modeled by introducing small mutations to the genotype (Ḡ and B̄), which yields
a mutant genotype (Ḡ′ and B̄′). The mutant genotype is developed into a mutant adult phenotype
P̄′a. The probability of the mutant fixing in the population is proportional to the selective advantage it
confers, but here we are interested in the direction of selection rather than the magnitude. As such, we
assume a “hill-climbing” model of selection (e.g., refs. (17, 43)), meaning that the selection coefficient is
assumed to be large enough to cause beneficial and deleterious mutations to fix or not fix respectively.
Under these assumptions, the mutant genotype becomes the mean population genotype if the fitness
of its corresponding phenotype is greater than the fitness of the existing mean population phenotype
(Ḡ(t+ 1) = Ḡ′, B̄(t+ 1) = B̄′), otherwise the genotype remains the same for the next generation.

Selection-limited evolution
Under directional selection, the cumulative effect of a large number of small mutations is equivalent
to the effect of a small number of large mutations when controlling for variance. Assuming that the
number of generations required for G to align itself with a local optimum and stabilize is small compared
the total number of generations within an evolutionary episode, the effect natural selection has in any
evolutionary episode can be modeled as follows. Hill-climbing selection is applied to all elements in B
(random order; no replacement) by testing two mutations: one for positive directional selection drawn
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from a distribution with mean q and one for negative directional selection drawn from a distribution
of −q, each with a standard deviation of σ. Only one mutation can be selected for under directional
selection. Experiments use q = 3 × 10−6 and q = 2 × 10−6 for the consistent and random constraints
problem classes respectively. A standard deviation of σ = 0.01q is used for both problem classes.

With a standard deviation of 1%, we are simulating the cumulative effect of 104 discrete mutations
(each with equal probability of being accepted given directional selection) all occurring before each new
evolutionary episode (coming from σ =

√
np(1− p), (p = 0.5)). Note that there is a trade-off between

(a) the number of mutations that occur before each new evolutionary episode; and (b) the number of
evolutionary episodes that are simulated in total. If we increase the number of evolutionary episodes,
the number of mutations can be decreased, but this means that more mutation–selection cycles must be
simulated. For our purposes, we find that 1600 evolutionary episodes are sufficient for the consistent con-
straints problem, and 4000 evolutionary episodes for the random constraints problem. This combination
of control parameters enables the discovery of high-fitness phenotypes without “over-fitting” to a locally
optimal, low-fitness peak (20).

Epistatic fitness landscapes
We utilize multi-modal selective environments defined by the sum of a large number of pairwise sign-
epistatic interactions. The fitness, w, of a phenotype, Pa, is defined by a matrix of epistatic interactions,
C, as follows:

w(Pa) = PaCPT
a . (2)

C is an n×n symmetric matrix whose elements, cij , determine the nature of the epistatic interaction
between traits i and j. All features of the fitness landscape are thus defined by the epistatic constraints
defined by C. We say that the “epistatic constraint” between two traits is “resolved” if and only if the
fitness contribution from their interaction is maximized. This is easily achieved for a single epistatic
interaction (either by “++” or “−−” for positive epistasis, i.e., cij > 0, or by “+−” or “−+” for negative
epistasis, i.e., cij < 0, where + and − represent the maximal positive and negative traits values respec-
tively), but multiple epistatic interactions between many traits can create epistatic constraints that are
difficult or impossible to resolve simultaneously.

We utilize two different classes of such fitness landscapes. Random constraints uses a problem matrix
whose diagonal elements take the value 1, cii = 1∀i, and the rest are uniformly initialized to a fixed-
magnitude, variable-sign value: cij ∈ {−d, d}. Here, we use d = 1 and set the problem size to n = 40.
This results in a problem with low consistency, meaning that, for example, there exists no phenotype that
resolves the constraints between A and B, and B and C, and also resolves the constraint between C and
A. In this fitness landscape, the globally optimal phenotype tends not to be able to resolve all epistatic
constraints.

In the consistent constraints problem class, the global optimum resolves all constraints. Here, C is
defined from a given target phenotype in a way that makes the target phenotype and its complement the
globally optimal phenotypes. Without loss of generality, we choose the target phenotype to be a 10× 10,
black-and-white image of concentric squares. In doing so, we are able to provide an easily-interpretable
visual representation of phenotypes (see Fig. 2a). The problem matrix is generated by calculating the
outer product of the flattened image vector, x, xi ∈ {−1, 1}, and setting all elements of the resulting
matrix that are non-neighboring pixels with respect to the target image to zero. Because the problem
matrix contains information about neighboring pixels only (since all non-neighboring pixels are set to 0),
local optima are caused by conflicting constraints arising when local patches of constraints are resolved
in mutually incompatible ways, leaving unresolved conflicts at the boundaries between these patches.

Whenever the sign of a trait resolves more constraints than it violates, eq. (2) defines directional
selection that rewards increases in the trait magnitude. This creates a sustained selective pressure for
genetic mutations that alter the G–P map (24, 29). The hypotheses tested in this paper, however,
concern the ability to discover different phenotypes and, in particular, different local optima in the fitness
landscape. Accordingly, we want to know whether the phenotypes that are found are fitter merely because
they have traits with larger magnitudes (which can receive higher fitness under the directional selection
of eq. (2)) or whether they have a different pattern of traits present in the phenotype satisfying a different
combination of epistatic constraints. In particular, the GRN has n = |G| evolvable parameters that can
affect the magnitude of each trait (as well as the correlations between traits), whereas the one-to-one
G–P map can only alter the elements of G. Accordingly, to remove any unfair advantage, our results
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report fitness using
w′(Pa) = w(θ(Pa)), (3)

where w(.) is the fitness function given by eq. (2) and θ(x) = 1 if x > 0 else −1.
This ignores fitness differences created by merely increasing the magnitude of a trait and instead counts

the number of satisfied epistatic constraints. It is in this sense that we refer to “different” phenotypes,
and different local optima in the fitness landscape, i.e., disregarding differences in magnitudes that do
not change the number of satisfied epistatic constraints. This ensures that fitness improvements are due
to finding different phenotypic patterns and not merely due to higher expression levels – because it has
found good phenotypes by learning what traits work well together, rather than learning to produce large
traits.

Cross-sections through genotype space
To generate the cross-sections through genotype space that are used in figs. 1 and 9, we utilize the global
optimum of the fitness landscape: T = 〈T1, T2, . . . , TN 〉, T ∈ {−1, 1}N , where N is the number of gene
expression potentials.

Figure 9 utilizes a one-dimensional cross-section through a subspace of genotypes:

Gi = 〈g1, . . . , gn〉 ,

where i = [[0, 1, . . . , N ]]. The individual values of G are determined by

gn =

{
Tn for n ≤ i
−Tn otherwise.

This cross-section maintains the property that local optima on the surfaces depicted in fig. 9 are true
local optima in the original high-dimensional fitness landscape also.

Figure 1 utilizes a two-dimensional cross-section of similar construction, with each dimension being a
particular cross-section through a subspace of genotypes:

Gij =
〈
〈x1, . . . , xN

2
〉, 〈y1, . . . , yN

2
〉
〉
,

where i = j = [[0, 1, . . . , N2 ]]. The first half of G is determined by

xn =

{
Tn for n ≤ i
−Tn otherwise,

and the second half by

yn =

{
TN

2 +n for n ≤ j
−TN

2 +n otherwise.

Similar to the one-dimensional cross-section described earlier, the local optima on the surfaces depicted
in fig. 1 are also true local optima in the original fitness landscape.
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