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Finding solutions to challenging optimisation problems in a feasible time requires in-

telligent search. Often, this intelligence is provided by humans, however the design

of complex solutions has been achieved by non-human intervention. Namely, solutions

found by natural evolution. With recent connections between machine learning and

evolutionary process, and speci�cally the evolutionary transition in individuality, this

thesis develops a novel Model-Building Optimisation Algorithm (MBOA) called Deep

Optimisation (DO) that induces a multi-level representation of a combinatorial optimi-

sation problems using a deep neural network. This multi-level representation allows for

the process of variation and selection to perform at multiple-levels of organisation.

DO is within the framework of Model-building optimisation algorithms (MBOAs) that

are an extension of evolutionary algorithms. MBOAs use machine learning methods

to adaptively reorganise the neighbourhood of an evolutionary search space. This can

allow for e�cient navigation through a �tness landscape; �nding solutions that would

otherwise be pathologically di�cult to �nd. Relative to current deep learning methods,

the models used by the state-of-the-art (SOTA) MBOAs are of lower sophistication and

capacity. Deep Optimisation (DO) is a novel MBOA that uses an autoencoder model

to recursively transform the neighbourhood of a solution to high-orders of organisation.

It then searches within these representations using Model-Informed Variation (MIV) to

improve a candidate solution. Due to the combination of a deep representation and

MIV, DO is able to �nd solutions that the SOTA-MBOAs cannot.

DO emulates the transition in individuality by using a deep autoencoder model to trans-

form the representation of a solution by capturing associate relationships between lower-

level units that contribute to the quality of a solution. The transformed representation

enables variation and selection to act on individual hidden nodes that transform back

to the solution level as a higher-order variation. The transformation is repeatedly ap-

plied, constructing a deep representation of the solution, and enabling search at multiple

scales of organisation. Thus, in e�ect, DO performs a recursive reorganisation of the

neighbourhood of a solution by inducing representations that capture relationships that

contribute to the quality of a solution.

This thesis successfully identi�es problem characteristics that distinguish the perfor-

mance between the SOTA-MBOAs and also DO with regards to both the model capacity

and model exploitation. Experiments show that DO is capable of �nding solutions to

problems in polynomial time that other SOTA-MBOAs require exponential time. The

identi�ed challenges are overlapping variation operators, pairwise independent variation

operators and cyclic paths. Further, it is found that there exists deep problem structure

that can be overcome in polynomial time using a deep model but take exponential time

when using a shallow model.

Finally, DO is applied to di�erent optimisation problem domains to demonstrate its

potential for exploiting problem structure in problems with unknown structure. This
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thesis provides a connection between deep learning models and MBOAs, showing state-

of-the-art results can be achieved by utilising the tools available in deep learning. This

suggests numerous avenues for further investigation, transferring state-of-the-art deep

learning methods into the domain of MBOAs
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Chapter 1

Introduction

Idea of incorporating more mechanisms from biology into evol computing ETI not evolv-

ability What class of algorithms, within the state of the art MBOAs

Evolutionary computing is the study of computational algorithms that emulate evolu-

tionary processes to �nd good solutions to an optimisation problem. Speci�cally, an

organism (solution) is adapted via variation and selection (search operators) to max-

imise (optimise) the survival in an environment (problem). The dynamical process of

evolution provides the mechanism of adaptation to a solution to the environment - �nd-

ing a solution of high quality. Evolution by natural selection has proven to provide

extraordinary adaptations to an organism in a variety of challenging environments. It

is with this observation that evolutionary computing has been extensively studied for

solving optimisation problems De Jong (2006); Eiben and Smith (2015)

Understanding the mechanisms that provide adaptation via evolutionary process re-

mains an extensive area of research both in evolutionary biology Laland et al. (2015) and

evolutionary computation Eiben and Smith (2015). It is hypothesised that in Genetic

Algorithms (GA), evolvability - the `ability of random variation to sometimes produce

and improvement' Wagner and Altenberg (1996) - is evolved by conserving low-order

adapted variable combinations whilst maintain variability between them. This is for-

mally known as the Building-Block Hypothesis (BBH) Goldberg (1989); Holland et al.

(1). It is hypothesised that the exchange or accumulation of building-blocks is likely to

improve the �tness of a solution. In doing so, the dimensionality of the search space has

been adapted from variation between individual units to variation between combinations

of adapted units. Or, rather, variability is transformed to a higher level evolutionary

unit.

The BBH provides a thought-provoking mechanism for evolving variability to maintain

adaptive variation throughout the evolution of the population. Previous experience of

variable combinations that contributed to the quality of a solution early in the search are

1
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used to guide future variation, rather than performing random exploration. However, in

GAs, the BBH has not been proven beyond the �rst generation and is further limited

to low-order (short) building-blocks, where the likelihood of disruption is small O'Reilly

and Oppacher (1995); Beyer (1997). Further, for a hierarchical construction of building-

blocks, where lower-level building-blocks combine to construct a higher-level building-

block, it requires variables within a building-block to be located physically close at the

solution representation Thierens and Goldberg; Thierens (1995, 1999); Watson et al.

(1998).

Signi�cant attention has been given to improving evolutionary computation by using

machine learning to explicitly capture and exploit the building-block information and

overcome the challenge of positional bias during recombination Hauschild and Pelikan

(2011). As we explore in this thesis, the interpretation of what the model learns and

represents, how the model is used, and how this connects with biological evolutionary

process varies between algorithms. We classify these algorithms as Model-Building Opti-

misation Algorithms (MBOAs). Within this class, algorithms can be broadly separated

into Estimation of Distribution Algorithms (EDAs), that use a probabilistic model to

replace crossover and mutation operators in a GA and share little resembelence to evo-

lutionary processes Pelikan and Goldberg (2006); Thierens (2010); Goldman and Punch

(2014); Hsu and Yu (2015), and Multi-Scale Search Algorithms, that use machine learn-

ing models to bias the variability of an individual solution Iclanzan and Dumitrescu

(2007); Mills et al. (2014); Cox (2015); Watson et al. (2011) and are connected to the

evolution of developmental processes Watson et al. (2014). In each case, a machine

learning model is used to capture relationships that contribute to a solutions quality

and used to bias future search.

In this thesis we explore how the theory of Evolutionary Transitions in Individuality

(ETI) West et al. (2015) can be emulated in evolutionary computing. The theory of

ETI describes a mechanism for the evolution of evolvability through a multi-scale process

where individual evolutionary units at one level of organisation form associations that

result in a new evolutionary unit at a higher level of organisation Smith and Szathm�ary

(1997); Watson and Szathm�ary (2016). These emergent higher-order entities become

themselves subject to natural selection, allowing for combinations of units from the

previous layer to be combined and selected together and thus enabling evolution to

perform at a new level of representation. Further, this process is recursively applied,

producing successive hierarchical transitions in individuality Watson and Szathm�ary

(2016). Therefore, unlike the methods that use machine learning methods to replace

the recombination operators used in GAs Hauschild and Pelikan (2011), we explore

how a deep model can be used to emulate the developmental process from genotype to

phenotype, which in turn biases the variability of an individual solution Watson et al.

(2011); Mills et al. (2014); Cox (2015). Deep Neural networks provide a model space to

explicitly capture and represent a multi-level representation of a solution with each layer
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inducing higher-order representations from the layer below. Further, recent success in

deep learning has provided a scalable method for constructing deep representations of

a data set Hinton and Salakhutdinov (2006). In doing so, they have produced state-of-

the-art (SOTA) results for many tasks Krizhevsky et al. (2012); Hinton et al. (2012a);

Cho et al. (2014); Silver et al. (2016), but not including optimisation. Inspired by the

connections between developmental processes and associative learning Watson et al.

(2014); Watson and Szathm�ary (2016), in this thesis, we connect deep neural network

models in the process of evolutionary computing to emulate ETI. We call this approach

Deep Optimisation (DO). A signi�cant di�erence between DO and other MBOAs is the

ability to represent a solution at multiple levels of organisation and to perform variation

and selection at this level of organisation. In DO, solution variables are encoded into

a compressed hidden space which represents a relationship between the units in the

layers below that contribute to the solutions quality identi�ed by previous experience.

Variation and selection is performed at this induced representation by performing a

local variation at the hidden layer and decoding back into the solution space, producing

large but organised variation. In an iterative selection process (local search in the

latent space), DO represents the process of variation and selection acting on high-order

evolutionary units. A deep model is constructed by the recursive process of inducing

a higher-level representation of solutions found by variation and selection performed at

the representation level below, in the analogue of successive hierarchical transitions in

individuality Watson and Szathm�ary (2016).

The idea of depth in a model is unique to Deep Optimisation: all state-of-the-art MBOAs

use the model to capture relationships between the original solution variables. This leads

to the research questions:

How can a deep neural network

improve evolutionary optimisation?

As we explore in this thesis, current SOTA MBOAs di�er signi�cantly in the model

capacity, method for exploiting information from the model, and their biological inter-

pretation. In this thesis we investigate the types of problem characteristics that DO can

overcome that other MBOAs cannot. Further, during our investigation, we construct

a theoretical problem that contains overlapping dependencies between building-blocks

that, for the �rst time, that categorically di�erentiates the performance between existing

SOTA MBOAs. Further, we �nd that the characteristics of cyclic paths categorically

di�erentiate the performance betwen methods used for exploiting model information

and pairwise independent functions categorically di�erentiate the performance between

model capacities. In conclusion, Deep Optimisation is the only algorithm that does not

exhibit exponential running time on any of these problem characteristics. We then pro-

ceed to explore how DO works and show that higher order representations of a solution

provide an adaptively reorganised neighborhood of a solution, presenting a smoother
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and simpler landscape for variation and selection to navigate, �nding solutions with

high-quality that were otherwise pathologically di�cult to �nd. Further, we show using

a single hidden layer, and not a deep layered network, fails to e�ciently overcome the

problem characteristics of overlap or pairwise independence. Finally, we apply DO to

mainstream optimisation domains and discuss DOs suitability and further directions.

The contributions of this thesis are:

1. Deep Optimisation is able to �nd solutions in polynomial time that for state-of-the

art MBOAs takes exponential time with respect to functions evaluations.

2. Using the model to bias the variability of an individual solution is able to �nd

solutions in polynomial time that when using the model to bias the variability of

a population takes exponential time with respect to functions evaluations

3. Variation and selection performed at a deep representation of a solution can over-

come problem characteristics in polynomial time that for variation and selection

performed at a shallow representation takes exponential time.

(a) The problem challenges of hierarchical overlapping variation is solvable in

polynomial time using a deep neural network but takes a shallow neural net-

work exponential time.

(b) The problem challenge of higher-order dependencies requires a multiple level

representation in a neural network model to represent a compressed repre-

sentation of the search space.

(c) The problem challenge of repeated optimisation requires information of pre-

vious neighbourhood representations to be maintained and separated.

1.1 Thesis Overview

The thesis is organised as follows:

Chapter 2: The foundations of this thesis are discussed and we review the relevant

literature regarding? the development of evolutionary computing, with speci�c attention

to the use of machine learning methods.

Chapter 3: The functionality of MSSA and EDA are compared using the algorithms

rHN-G and BOA. We show that rHN-G can overcome problem challenges that BOA

cannot even though the model used in BOA is of higher sophistication than rHN-G. We

then develop the rHN-G algorithm to use an autoencoder model, rA-G, and demonstrate

a comparable performance with rHN-G. We show that rA-G can represent problem

structure that rHN-G cannot and that synthetic hierarchical problems, previously used

as a benchmark in the literature for MBOAs, can be represented by a shallow model.
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Chapter 4: Introduction of the Deep Optimisation (DO) Algorithm. We explore the

relevant literature that is applicable to the understanding of inducing and representing

higher-order representations of a dataset. The DO algorithm is then described in detail,

providing information about alternative design decision that are later explored in this

thesis. Finally, we compare the functionality of DO with all state-of-the-art methods

used as comparative algorithms in this thesis. We show that signi�cant di�erences

exists between their functionalities and develop hypothesis for problem characteristics

that categorical separate the performance between algorithms into can and cannot solve.

Chapter 5: We �rst review the relevant literature for constructing and using synthetic

benchmark optimisation problems. We develop and detail the theoretical problem con-

struction that contains problem characteristics identi�ed in Chapter 4 into a single

problem. We explore the interaction between these characteristics to understand the

challenges the problem presents to an optimisation algorithm.

Chapter 6: We perform a comprehensive scalability study using the theoretical prob-

lem. The result show a categorical di�erentiation between the performance of the exist-

ing state-of-the-art algorithms for the �rst time. Further we show a categorical di�eren-

tiation between the state-of-the-art MBOAs and DO. DO is the only algorithm capable

of e�ciently overcoming all problem challenges. (possible merge with Chapter 5)

Chapter 7: We perform an in-depth analysis on the performance of DO, with speci�c

attention to how DO is exploring the solution landscape, and how the induction of

higher-order representations provides a simpler landscape for variation and selection to

explore. (not sure how relevant this chapter is)

Chapter 8: In the �nal chapter, we apply DO to di�erent optimisation domains and

show promising results and future directions to explore. We further discuss other ar-

eas of application for DO and how DO can provide unique functionality to di�erent

optimisation domains.





Chapter 2

Foundations

There exist many algorithms that are suitable methods for �nding a solution to an

optimisation problem. This thesis is interested in search methods that are explicitly

aligned with the bias of the building-block hypothesis. Speci�cally, algorithms that

automatically reduce the dimensionality of the search space by exploiting relationships

between variables that contribute to a solutions quality. To this regard we �nd methods

that implicitly or explicitly exploit this bias of search space exploration. This thesis is

particularly focused on methods that use machine learning methods to explicitly capture

and exploit these regularities. We �nd that no state-of-the-art performance has been

achieved using neural network methods.

In this chapter, the foundations that lead to the development of machine learning models

to exploit the build-block hypothesis and the state-of-the-art methods are reviewed. This

provides the concepts that are built-upon in this thesis.

This chapter provides the main literature review, from which the main contributions of

this thesis are developed from. For readability, Chapters 5 provides additional review of

the synthetic problems used in the evolutionary computation community for distinguish-

ing the performance of MBOAs. Chapter 4 provides additional review of deep learning

models that are suitable for use in Deep Optimisation. Finally, in Chapter 7, additional

literature is reviewed regarding applied problems.

2.1 Concepts

2.1.1 Combinatorial Optimisation Problems

Combinatorial optimisation (CO) is the task of searching for a solution from a �nite

collection of possible candidate solutions that maximises (or minimises) the objective

function. The objective function (also referred to as the �tness function) provides a

7
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measure for a solutions quality. CO problems contain the characteristic of a discrete

variables and thus are non-di�erentialable problems. This makes them particularly

challenging. For the challenging problems, we often rely on search methods to explore

the solution space for a solution to the problem.

Many interesting CO problems fall into the class of NP-hard. A problem class refers to

the description of a problem, the speci�c parameters of the problem such as the size of the

problem are not speci�ed. A problem instance is a problem described by the description

of a problem class that has all parameters speci�ed. The complexity of a problem class

is de�ned by the Turing Machine computational model. Speci�cally, the complexity

is a measure of the dependency between the time or space resources used to �nd a

solution and the size of the problem instance. If the relationship is polynomial using a

deterministic machine, the problem class is in complexity classP. if the relationships is

polynomial using a non-deterministic machine, the problem class is in complexity class

NP . A deterministic machine can be simulated using a non-deterministic machine and

therefore a problem class inP is also in NP . However, the reverse has not been proven

and remains one of computer sciences most famous unanswered questions, although most

experts agree thatP 6= NP . Interesting and practical problem classes are generally in

NP but not in P, for instance SAT citeCook (1971); Garey and Johnson (1979), therefore

using a deterministic machine the computational resource grow exponential with the size

of the problems. Therefore, for heuristic methods are often used to search the solution

space as they provide an e�cient method for �nd solution (polynomial time complexity)

although have no guarantee for �nding the global optimal solution.

The complexity of a problem class is determined by the worst case performance on the

problem class. Speci�cally, the worst case of problem instances in the problem class.

However, they may exist problem instances with in a class that contains characteristics

that can be solved in polynomial time, such as large real-world travelling salesman prob-

lems Applegate et al. (2006), or good solutions (that are regarded as su�ciently close to

the optimal solution) can be found in polynomial time. Identifying these characteristics

often requires years of dedicated research and domain expert knowledge to understand

the characteristics of the problem such that methods can be developed to exploit this

information.

In the case where problem structure is complex or unknown (such as the case in sim-

ulations) it is not possible to use algebraic model-based mathematical programming.

Instead, black-box optimisation methods are required, where the term black-box refers

to the problem structure of an optimisation problem and not the search algorithm.

Therefore identifying exploitable problem structure requires an adaptive search search

that responds to the characteristics of the search identi�ed during optimisation.

The complexity of an algorithm is determined by measuring the proportional relationship

between the change in computational e�ort to �nd a global optimal solution and the
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change in problem size. This provides a measure for the feasibility of an algorithm.

An algorithm that shows exponential scaling, cn, will inevitably become infeasible as

the dimensional of the problem increases. In this case, we refer to the algorithm as

failing. It is unable to overcome the problems challenges in the optimisation problem

to e�ciently �nd a solution. On the other hand, if an algorithm shows polynomial

scaling, nc, then the algorithm called successful (or e�cient) as it is able to overcome

the problem challenges to e�ciently �nd a solution to the optimisation problem. We

refer to algorithms only showing an e�ciency di�erence if there is only a change to the

the exponent and coe�cient only (the base does not change).

In this thesis a solution referrers to an con�guration to the optimisation problem. A

globally optimal solution explicitly refers to the solution that has the highest quality out

of the set of all possible candidate solutions. A locally optimal solution referrers to a

solution that has a neighbourhood of solutions that all have lower quality. A candidate

solution referrers to a solution that is being explored or utilised by an optimiser. A

neighboring solution is a solution that given a variation operator is generatable from

the current solution. A promising solution refers to a solution that shows greater than

average quality relative to other other candidate solutions.

A �tness landscape provides a abstract visualisation method for representing the problem

challenges that are induced by the problem structure. The landscape surface is de�ned

by the solutions neighbourhood and the �tness di�erences between the neighbourhood

solutions. Therefore one can visualise how exploiting information during search will

e�ect the trajectory of a search (the path a solution takes during search). The charac-

teristics of the landscape present challenges that an algorithm must overcome to navigate

to a superior solution e�ciently. A solutions neighbourhood is de�ned as the alterna-

tive solutions that are accessible from a current solution. The accessible solutions from

a solution (its neighbours) are de�ned by the variation operator. This thesis uses the

term variation operator to describe the change applied to a solution during search. The

variation operator is relative to a candidate solution. For example, a single-point varia-

tion provides variants of a solution that are a single-point away. Of course, a solutions

neighbourhood could be all solutions, as de�ned byK -point mutation, where k is the

size of the problemN . However, the likelihood of applying the correctk-point mutation

scales exponential withk

2.1.2 Black-Box Optimisation

Human-designed organisation requires domain-expert knowledge to decompose the prob-

lem at its natural joints. However, in this thesis, we are interested in algorithms that

automate this decomposition. Natural evolution provides an inspiring example of an

algorithm that exploits natural problem structure. Natural evolution is a dynamical

process that cannot select for future variability that produces �tter individuals, yet
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natural evolution is able to produce a seemingly intelligent solution to the challenging

environments. Multi-cellular organisms, found by natural evolution, show a remarkable

organisational structure. Of course, these solutions may not be optimal for the envi-

ronment. However, they are solutions of higher quality that have been e�ciently found

(considering the dimensionality of the original problem space). E�ectively searching for

a solution to an optimisation problem generally requires encoding some knowledge of

the problem into the search process. Wolpert and MacReady put this succinctly with

the No free lunch theorem Wolpert and Macready (1997). It states that the perfor-

mance of a search process, averaged over all optimisation problems, will be equal to

the performance of random search. This does not dictate an algorithm cannot perform

better than random search. It simply states that a search process that has better than

random performance on subset of problems will show a poor performance on problems

outside this subset. The no free lunch theorem is not a limiting factor when designing

optimisation methods. Rather, it is an important caveat to consider. Generally, we are

interested in designing search methods that perform well on a speci�c class of problems.

The performance of a search process is therefore assessed as the performance achieved

on this distribution of problems, or as Wolpert describes how well aligned a search al-

gorithm is with the distribution of problems Wolpert (2013). The alignment of a search

algorithm is in reference to the ability of the search algorithm to exploit the problem

structure.

Alignment of the search bias with the problem requires learning and understanding the

nature of the problem subset and exploiting characteristics of the problem structure.

For instance, if an optimisation problem can be modeled using a linear algebraic model,

the global solution can be found in polynomial time ?. Thus linear programming ex-

ploits the particular characteristic of linear relationships in the problem structure. For

problems that cannot be represented by algebraic model-based mathematical program-

ming, heuristic methods are used and developed to exploit particular problem structure.

A successful example is the Lin-Kernighan heuristic used for the symmetric travelling

salesman problem Lin and Kernighan (1973); Applegate et al. (2006). However, without

domain speci�c knowledge, the ability to use algebraic models, or simply unknown prob-

lem structure (such as simulations) generally requires black-box optimisation methods.

Developing optimisation algorithms to �nd solutions in a feasible time (polynomial time

complexity) requires learning and understanding the problem characteristics of the prob-

lem subset and then developing algorithms that align the search bias with the problem

structure. This can be challenging and even impossible for complex optimisation prob-

lems. Specialised techniques that are capable of solving optimisation problem in a feasi-

ble time require expressing the problem using a particular form i.e., linear programming

?, symmetric distance between cities (in the case of the travelling salesman problem)Lin

and Kernighan (1973); Applegate et al. (2006). If an optimisation problem can be re-

duced to such form, their exist specialised and e�cient solvers that can exploit particular
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characteristics that are present in algebraic model. However, for complex optimisation

problems it can be impossible or infeasible to represent the optimisation problem accu-

rately in such form. Further, the problem structure can simply be unknown as in the

case of simulation based problems. In this case, the optimisation problem is said to be a

black-box. In this case, developing algorithms that exploit the problem structure must

infer this information from observations of the functions response (output) to changes in

the solution (input) as illustrated in Figure 2.1. This thesis focuses on the optimisation

methods that are suitable for black-box optimisation problems.

Figure 2.1: In a Black-Box Optimisation (BBO) problem, the relationships that com-
pute the objective function (output response) for a given solution (input) are hidden
from the optimiser. An intelligent optimiser must induce the black-box structure using

the input and outputs only.

For constraint handling including violation of constraint, penalty term in to the objective

function.

For real-world problems, developing optimisation algorithms to �nd solutions with high

quality in a feasible time (polynomial time complexity) is the primary goal. Of course,

it is preferred if the solution with highest quality is found. However, in practice this

may not be possible, or even veri�able in polynomial time. For example, the solution for

for benchmark problem instances in challenging optimisation problem is often refereed

to as best known solution rather than global optimum as it is infeasible to verify to be

the global optimum solution Burkard et al. (1997). Never-the-less e�cient algorithms

can still be useful for �nding good quality solutions. In this thesis, we are interested in

algorithms that exploit regular occurring relationships between variables that contribute

to a solutions quality, and speci�cally combing and conserving these relationships to

construct superior solutions.

2.1.3 Decomposable Problem Structure

In optimisation - the interactions is to increase �tness by satisfying the constriaints

between the variables. The emergence of order in is related to the emergence of variable

combinations that contribute to the �tness of a solutinon.

In this thesis, problem structure is used to refer to relationships between variables that

contribute to a solutions quality. Often, it is not practical or even possible (in the case

of black-box optimisation problems) to directly examine the problem structure . The

question therefore arises. How can we exploit problem structure if we cant have access

to it? Simons Simon (1969) explains that we can induce the natural decomposition of

a function by observing its response to a stimulus. By stimulating the system, we can

observe regularities in the response to help induce the structure of the function.
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This structure is intuitive to an engineer. An engineer develops a global solution to a

problem by decomposing the problem into smaller, easy to solve problems - a modular

decomposition. Solution to these modules are then combined to form-higher solutions,

an organisation of higher-order modules. The solutions to these higher-order modules

are then recombined further, repeating the process to generate a global solution to the

problem.

E�cient search for black-box optimisation problems requires biasing the search process

based on few assumptions about the problem. In this thesis, the bias of the search

is based on decomposable functions. Taking a complex high-dimensional function and

reducing it to many smaller function that interact to form the original function is a

principle adopted by engineer's. Generally, when an engineer is presented with a chal-

lenging optimisation problem they decompose the global problem it at its natural joints

into smaller, easier to solve problems and then constructs a global solution from the

solutions to these sub-problems. A process called problem decomposition. It is a reduc-

tionist technique that is a popular approach for optimisation Papadimitriou and Steiglitz

(1998). It is assumed that if one can perform an e�ective reduction, one can expect to

�nd good solutions to complex optimisation problems e�ciently. The caveat being, of

course, does the problem have a tractable decomposition that can be exploited e�ciently.

The decision and therefore knowledge required to make a successful decomposition of

an optimisation problem is the following:

� Identifying sup-problems of the global optimisation problem - problem decompo-

sition

� Identifying solutions to these sub-problems - partial solutions

� Combining partial solutions to construct a global solution - exploiting partial-

solutions

For black-box optimisation methods one must infer the problem decomposition by ob-

serving the response of the function to variation in solutions to the problem. Simon Si-

mon (1969) identi�es that in naturally occurring functional systems, be that biological

or human-designed (For example, multi-cellular organisms, software, engineered solu-

tions and social organisation), share a nearly-decomposable structure. Speci�cally, the

high-order organisation of a system (global function) is a resultant interaction between a

nesting of many smaller low-order systems (sub-functions). The internal relationships of

a sub-function (interactions between units within a sub-function) are stronger than the

relationships with external sub-functions (interactions between units of di�erent sub-

functions). Therefore, the system can be decomposed into di�erent scales of complexity

and organisation, depending on the strength of interactions. The internal relationships

are therefore prioritised in the system. Breaking this relationships, and therefore the

sub-function, removes the external dependencies. An external dependency can only act
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on a viable partial solution. If there is no valid solution for the sub-problem, then with

out `a priori' information it is not possible to identify the external relationships of the

partial solution.

The units within a sub-function are stronger than interactions with units outside the

sub-function. Therefore, the system can be decomposed into di�erent scales of complex-

ity and organisation, depending on the strength of interactions between units. Simon

Simon (1969) explains that we can induce the natural decomposition of functions by

observing its reaction to stimulus. By stimulating the system, we can observe regular-

ities that occur in the response that provide a signal to the type of decomposition of

the complex system, or the features of a complex system (a combination of units that

show a regular relationships when stimulated). Regularities that occur often can be in-

ferred as contributions to the functionality of the complex system. For an optimisation

problem, the objective function (system) is stimulated by make a change to a solution

or comparing variant solutions (a change in the input) and observing the change to the

objective value (the response of the system). In doing so, this provides a signal for the

natural structure of the system that we can then use to infer the relationships between

variables that contribute to variations in the solutions. It is assumed that a bottom-up

construction that exploits sub-functions will produce a function of superior quality.

Connecting this with our thinking for deep optimisation. It is common to attribute the

success of a deep neural network to its ability to extract salient features from a data-set,

where each layer provides a higher-order abstraction of the features. For instance, in

image recognition, the lower layers identify edges, the next layers combine edges to form

regular shapes and the deepest layer uses the shapes to construct high-order objects.

Indeed it's importance has formed a dedicated sub-�eld called representation learning

that is further explored in chapter 4. The function of classi�cation is a decomposition

of nested simpler functions. Therefore deep neural networks appear a natural �t to

explore the idea of decomposing an optimisation problems. However, the signi�cant

challenge for optimisation is the learning signal. This thesis uses inspiration form natural

evolutionary process to provide the learn-able signal. Speci�cally, the stimulus and

response is provided by variation and selection.

Of course, exploiting the natural structure may not align with the actual problem struc-

ture - the interactions between variables that contribute to the global solution. For

instance, problems that contain deceptiveGoldberg (1987); Whitley (1991) or random

structure Heckendorn et al. (1999). In this case, the relationships that appear due to

the dynamics of evolutionary processes, namely natural selection, will not improve the

search process. Therefore, exploiting natural problem structure will show and exponen-

tial scaling to �nd to global optimum. If the problem has optimal substructure - optimal

solutions to sub-functions form the global solution - then we expect the algorithm to �nd

the solution in polynomial time by exploiting the natural structure. It is expected that in

generally optimisation problems, that problems are between these extremes. Therefore
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whilst exploiting natural problem structure may not provide a global optimal solution.

It will proved a method for �nding a natural solution in feasible time - the performance

will be determined by the type of structure in a problem instance. For example, give

an engineer a problem with a non-logical set of constraints, we would not expect them

to easily �nd a solution. The bias of the engineering mindset makes them a superior

performer for structured problems. Therefore we can expect that search process that

exploits patterns and structure in an optimisation problem will have better than random

performance on all types of problems that contain these patterns and structures. This

thesis is interested in methods that automatically identify the problem structure for a

problem instance and exploit this information to improve the search process.

If there is variation, then the unit must be variable. However, to opposite is not true.

The measure of variation is only a surrogate for variability Wagner and Altenberg (1996).

Therefore, modelling the variation in a distribution does not provide use with the vari-

ability in a dataset....

In this thesis, the type of problem structure explore is near-decomposable building-

block structures. However, as discussed in Chapter, the devleopment of DO facilitates

the exploitation of other types of important structure, such as backbones Prugel-Bennett

(2007)

Watson and Knowles paper in here - multi-collectivisation single-objective optimisation

problems. - something about forcing a decomposition of the problem and optimising

this seperatly. Knowles et al. (2001)

Searching in

Mills et al. (2014) -

The idea of decomposing a global problem into simpler easy to solve problems is also the

foundation of dynamic programming. Optimal sub-structure an non-overlapping prob-

lem structure can be solved using divide an conquer. If the problem contains overlapping

sub-problems, then dynamic programming is applicable. (applicable to shortest path -

bellman-ford algorithm).

Solving a problem by dividing it into smaller more manageable problems (in a bottom

up process) assembling good solutions to small problems to �nd good solutions to large

problems. divide and conquer, branch and bound

An optimisation problem that contains optimal sub-structure means that the global

solution is combination of sub-problem optimal solutions.

Divide and conquer, and multi scale search: Solving a problem by dividing it into smaller

more manageable problems (in a bottom up process) assembling good solutions to small

problems to �nd good solutions to large problems.
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Modular variation instead of singular

We assume that solutions to real-world problems, that are . Thus �nding the correct

representation of a solutoin that allows for modular exploration of the solution spcae is

often used for optimising.

Superior solutions can be constructed from a set of promising solutions - regular occur-

ring relationships between variables that contribute to a solutions quality is assumed to

be an important relationships that is present in superior solutions.

2.2 Algorithms inspired by the processes of biological evo-

lution.

A particular advantage of evolutionary computation in comparison to alternative opti-

misation methods is that it makes few assumptions about the problem structure. This

makes the class of algorithms successful in �nding solutions across a wide range of prob-

lem domains De Jong (2006). Therefore, by understanding and emulating the mecha-

nisms that contribute to adaptation, we can further develop the success of evolutionary

algorithms. That is not to say understanding the algorithm of evolution can solve

all our problems. Wolpert and MacReady put this succinctly with the no free lunch

theorem Wolpert and Macready (1997). It states that the performance of a search

process, averaged over all optimisation problems, will be equal to the performance of

random/exhaustive search. The no free lunch theorem is not a limiting factor when

designing optimisation methods; rather, it is an important caveat to consider. Gen-

erally, we are interested in designing search methods that perform well on problems

with particular characteristics. The performance of a search process is therefore deter-

mined by evaluating the performance of the search on this distribution of solutions, or as

Wolpert describes how well `aligned' a search algorithm is with the distribution of prob-

lems Wolpert (2013). In the the case of evolutionary computing, how well variability is

aligned with the problem structure - the evolvability of the system.

Genetic Algorithms (GAs) emulate the process of natural selection in a population Hol-

land et al. (1). The adaptation of a solution is a consequence of the dynamic process

of variation and selection over multiple generations. The iterative process of exchang-

ing material between �t individuals and replacing lower �tness individuals moves the

population of solutions towards regions of higher-�tness. In GAs, adaptive variation is

implicitly controlled by the solution representation, crossover operator, mutation rate

and selection criteria. It is hypothesised that these operators combine to implicitly

transform the neighbourhood of a solution by conserving adapted variable combinations

(building-blocks) whilst maintaining variability between them Goldberg (1989); Holland

et al. (1). In doing so, the dimensionality of the search space has been reduced from
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individual units to combinations of adapted units. Or, rather, variability is transformed

to a higher level evolutionary unit. It is hypothesised that exchange or accumulation of

building-blocks is likely to improve the �tness of a solution.

An evolutionary unit refers to an entity that is subject to variation and selection. A

building-block represents cooperative association between two or more individual solu-

tion units at the solution level that contribute to the quality of a solution - a higher-order

evolutionary unit - that emerges from variation and selection. Variation and selection

can now act on the group as an individual unit, searching in combinations of higher-

order evolutionary units. Simons Simon (1969) identi�es that in naturally occurring

functional systems, be that biological or human-designed, e.g., multi-cellular organisms,

software, engineered solutions and social organisations, share a nearly-decomposable

structure. Speci�cally, the organisation of the global function is a nesting of lower-

order components. The internal relationships of a sub-function are stronger than the

relationships with external sub-functions and are therefore prioritised. The lower-order

components are combined to construct a higher-order component. This is recursively

applied to construct the global function, representing a function of hierarchical organ-

isation. Therefore, in the case of nearly-decomposable functions, the system can be

decomposed into di�erent scales of complexity and organisation. Therefore, reducing

the dimensionality of an solution space by the mechanism of self-organisation aligns the

search process with near-decomposable problem structure.

This mechanistic view is implicit in GAs. We desire a high degree of evolvabiilty until

the global optimum is found. However, as evolution proceeds in �nding solutions with

higher �tness, the likelihood of adaptive variation reduces . The likelihood of �nding a

solution with higher �tness naturally reduces if the operators for recombination remain

constant. In a GA, crossover enables the exchange of higher-order evolutionary units

once emerge, providing an implicit method for maintaining a degree of evolvability later

in the search.

The BBH provides a thought-provoking mechanism for evolving variability to main-

tain adaptive variation later in the search - the evolution of evolvability (use previ-

ous experience to guide variation of what to explore next rather than performing ran-

dom exploration) Altenberg et al. (1994); Wagner and Altenberg (1996). However, the

BBH has not been proven beyond �rst generation and is further limited to very low-

order (short) building-blocks, where the likelihood of disruption is small O'Reilly and

Oppacher (1995); Beyer (1997). A hierarchical construction of building-blocks, where

lower-level building-blocks combine to construct a higher-level building-block requires

variables within a building-block to positioned locally on the solution representation

Thierens and Goldberg; Thierens (1995, 1999); Watson et al. (1998).
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Never the less, the BBH provides a thought-provoking mechanism for maintaining a

degree of evolvability - By evolving the representation of a solution, and or the re-

combination operators, whilst the population evolves, the evolvability can be adapted

during evolution that allows for random recombination and selection to maintain a high

likelihood of �nding solutions with greater quality.

The BBH encouraged the development of algorithms to explicitly identify, capture and

exploit building-block structures using machine learning algorithms. Most noteable are

the class of Estimation of Distribution Algorithms that use machine learning to con-

struct a probabilistic model of a distribution of promising candidate solutions and then

sample this model to generate new o�spring Hauschild and Pelikan (2011). In doing so,

EDAs were capable of overcoming challenges that GAs could not Harik (1998); Pelikan

and Goldberg (2001, 2006) and successfully applied to a wide range of problems Pe-

likan and Goldberg (2003a); Aickelin et al. (2007); Ceberio et al. (2013); Santana et al.

(2008). However, in doing so, these algorithms lost their connection with evolutionary

theory. EDAs use a centralised model to replace recombination operators used in GAs

by modelling the alliec frequencies in a population and generating new solution using

random sampling. Whilst it is argued that alliec frequencies explain adaptive variation

in biologiy Charlesworth et al. (2017). It does not provide a mechanism for learning

form past experience.

Watson connects how evolutionary process can learn from its experiences to shape future

variability Watson and Szathm�ary (2016). Speci�cally, the evolution of the development

process from genotype to phenotype can exhibit associative memory Watson et al. (2014).

In this case, machine learning models are not used to capture the distribution of alliec

frequencies, like in EDAs. Rather they explicitly capture higher-order units of variation

for a solution, biased by previous experience during development. The model is used to

inform variability of an individual solution (adaptively reorganise the neighbourhood of

a solution) instead of the variability of a distribution.

GAs emulate the dynamical process of variation and selection, inspired by population

dynamics, to improve the average quality of a distribution of solutions. Crossover pro-

vides a method for reducing the variability in a population, by mixing solution with

higher-�tness contributions, and mutation provides a method for slightly increasing the

diversity in a population De Jong (1975). One of the limitation of a GA is designing an

appropriate crossover operator

Evolvability of a solution di�ers from the variability of a solution. Variability is the the

ability to vary - to produce an alternative solution. Of course, this is trivial via random

permutation. Evolvability refers to the ability of random permutation to produce an

improvement.
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Evolution by natural selection is regarded as the primary source for adaptation in a

population Charlesworth et al. (2017). Variations in evolutionary units, provided by the

population, are di�erentiated by selection. Selection prioritises the units with higher �t-

ness for the generation of new units. Adaption occurs as a consequences of the dynamical

process of variation and selection over multiple generations.

In biology, natural selection is not limited to a single level of representation. Natural

selection acts at multiple scales of organisation - multiple level of pheontypic represen-

tation. The evolutionary transitions in individuality West et al. (2015) is only implicitly

captured by evolutionary computing

e.g. via increasing the units reproductive success. Over multiple iterations of variation

and selection (generations), solutions are encouraged to move in the direction of increased

�tness - a desirable characteristics for optimisation problems.

Genetic Algorithms were the �rst example of emulating the dynamics of evolution for

solving optimisation problems.

Important that algorithms make relatively few assumptions about the nature of the

problem - allowing for general application to optimisation problems.

In this thesis, we are interested in search methods that are biased towards exploiting

regularities present optimisation problem to adapt the search during optimisation. Na-

ture provides many inspirational methods for exploiting regularities that occur from

a dynamical process, such as swarm intelligent methods. In this thesis, we are inter-

ested in natural evolutionary process. Natural evolutionary processes provide us with

inspirational mechanisms for identifying and exploiting the structure of an optimisation

problem that has unknown problem structure (black-box) to improve search. Namely

the dynamical process of variation and selection. The organisation of complex organisms

show a decomposition structure, arranged as multi-level construction of sub-functions

suggesting an optimisation process biased towards exploiting regularities that occur due

to the dynamical process. Referring back to Simon's near decomposable structures and

identifying organisational regularities, in natural evolution, the stimulus is provided by

variation. Selection provides a method for extracting the response information due to

variation, and variation operators, such as sexual reproduction (crossover) provides a

method for exploiting the information to generate new solutions. Two methods we ex-

plore in this thesis are population dynamics that exploit alleli frequencies in a population

of solution and developmental dynamics that iterative update a solution by making par-

tial changes. Of course exploiting these relationships will not always result in �nding

higher-quality solutions. For example, when the relationship is not present in the global

optimum, as such generating solutions that exploit these relationships will not �nd the

global optimum, or at the very worst not improve a solution (deceptive structure).
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Genetic algorithms are a well-studied class of stochastic optimisation algorithms that

explore the search search space using methods inspired by the population dynamics

observed in natural evolution ?. Namely variation and selection. Variation is provide

by a distribution of solutions containing alternative solutions. With variation, selection

provides a pressure to prioritise solutions with greater quality. In GA, crossover is a

method for exchanging information between promising candidate solutions to generate

new solutions. Therefore, the crossover only operator will only reduce the diversity in a

population. Mutation is an additional operator that provides a method for inducing more

variation into a population i.e, A single-point mutation operator provides a probability

of including local variants into the search. A limitation of using a population to provide

variation is maintenance of alternative solutions during optimisation. As such, there

exists a research area for methods of preserving diversity in a population to overcome

the challenges of premature convergence De Jong (1975).

GAs make few assumptions about the optimisation problem (black-box optimisation

technique), and therefore applicable across multiple problem domains, and applicability

to derivative-free optimisation problems. GAs are therefore suitable for BBO problems

as they require no `a priori' information about the problem nor require the optimisation

problem to be model by a strict algebraic model (e.g. linear and quadratic program-

ming). GAs use a population of solutions, genetic operators and selection pressure to

search the space of solutions. The population contains implicit information about the

current state of the search. A population is updated by using operators to generate new

solutions from the material of prioritised solutions (solutions containing information that

contribute to the quality of a solution) and replace solutions of lower priority. Solution

prioritisation is provided by the selection pressure, generally by favouring high-quality

solutions for recombination. Each population update is called a generation. Multi-

ple generations occur to explore the search space. At each generation the population

is updated using the genetic operators to increase the average solution quality of the

population.

In a GA, the model used to exploit the problem structure is de�ned implicitly by the

population of solutions and the set of variation operators used to recombine material

priorities by the selection pressure. The adaptive search is provided by the prioritising

solutions with higher quality for recombination. Development of a GA has been fo-

cused on improving the alignment of the dynamical process with the problem structure.

The success of GA's has been attributed to the ability of selection to prioritise com-

mon features shared in high-quality solutions (variable combinations that contributes

to a solutions quality) and crossover to provide a method for recombining building-

block material to generate higher-order building-blocks - known as the building-block

hypothesis?Goldberg (1989). Speci�cally, the dynamical process implicitly exploits reg-

ular occurring variable combinations by prioritising solutions higher-quality solutions,

and therefore containing variable combinations that contribute to a solutions quality
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(partial solutions) during recombination. Recombination, via crossover, provides an im-

plicit methods of exchanging partial-solution information between solution to generate

higher-order partial solutions. - generating high-quality solutions from the material of

lower-quality solutions. This process is repeated, creating a recursive exploitation of

successively higher-order partial solutions to create even higher-order solutions. This

process of exploiting lower-order solutions to construct higher-order solutions is a pro-

cess of dimensional reduction of the search space. Instead of searching all possible

combinations for the higher-order solution, the higher-order solutions is constructed by

checking only a few combinations of partial-solutions.

The performance is therefore dependent on the available material in the distribution

of solutions (maintaining alternative partial-solutions in the population) - variables as-

signments and the operators used for recombination, identifying partial solutions - the

selection pressure, and e�ciently recombining partial solutions to search for higher-order

solutions GAs have therefore been developed to improve the diversity maintenance dur-

ing optimisation (preserving alternative solutions). A naive way of course is to increase

the distribution size. More advanced methods include selection methods, such as binary

tournament selection and replacement methods such as niching. In a addition crossover

operators have been studied to understand their e�ectiveness. Although is skepticism of

the BBH providing an explanation of the adaptive capability of a GA Beyer (1997), the

intuition and idea of the building-block hypothesis never the less ignited the develop-

ment of algorithms to speci�cally exploit and search in combinations of building-block

structure. Indeed, many theoretical problems that have been developed to evaluate or

understand the performance of GA are constructed using building-blocks Mitchell et al.;

Watson et al. (1998, 2011); Deb and Goldberg (1994); Pelikan and Goldberg (2001); Tsuji

et al. (2006); Co�n and Smith (2007). The nature and variability of the characteristics

that de�ne a building-block, speci�cally the positional bias, made hand-engineering oper-

ators an unfeasbile method. Thus machine learning methods were used to automatically

indentify building-block structures and recombine these building-blocks.

exploration vs exploitation �Crepin�sek et al. (2013). Di�culties in GA (booby traps) -

Weise et al. (2012) Limitations of GAs include premature convergence and disruptive re-

combination. Convergence of a GA occurs when genetic operators can no longer improve

the quality of the population. Genetic algorithms require variation in the population

to search the solutions space. Recombination and replacement provides a process that

reduces the variability in the population, with lower-quality solutions being replaced by

higher-quality solutions. When low-quality solutions contains use-full variables combi-

nations, then overwriting this material before exploiting this information causes the GA

to converge to a sub-optimal solution, even though the information was available during

the search. .Methods to overcome this issue is to increase the population size Goldberg

et al. (1992) or included diversity maintenance techniques (niching) De Jong (1975);

Mahfoud (1995).
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Disruptive recombination refers to the ability of the crossover over operator to e�ciently

recombine complete building-blocks (partial-solutions)?Goldberg et al. (1993). This re-

quires both identifying and e�cient recombination of partial-solution's. Positional biased

crossover operators, such as 1-point crossover, exploit a positional bias during recombi-

nation. As such, they provide a mechanism of exploiting partial-solutions with variables

physical neighbours on the solutions string. This is refereed to as building-blocks con-

taining tight-linkage Goldberg et al. (1993); Thierens (1995); Deb (2000); Watson (2002).

Positional biased crossover operators fail to exploit problem structure containing random

linkage, the set of variables for a partial solution can take any locating on the solution

string. However, developing position-ally unbiased variation operators, such as uniform

crossover, causes large disruption to high-order building-blocks and therefore fail to e�-

ciently recombine the partial-solutions. Thierens (1995); Harik (1998); Thierens (1999);

Watson (2002, 2006). This therefore lead to the development of using machine learning

methods to explicitly capture building-blocks to remove positional bias crossover.

The often cited advantage of a GA is its ability to apply across problem domains. How-

ever, a signi�cant proportion of research is focused on improving the recombination

between solutions, either via improving the representation of a solution, so that ge-

netic operators are more suitable Salomon (1996); Rothlauf (2006) or by improving the

genetic operators to improve the alignment of the search with the problem structure

Potvin (1996); Herrera et al. (2003); Pavai and Geetha (2016) for each type of optimisa-

tion problem. Further complexities are introduced by optimisation problems containing

infeasible solutions and generally require hand-engineered methods to overcome infea-

sible solutions Salcedo-Sanz (2009); Mezura-Montes and Coello (2011). Given that a

popular recommendation to use GAs is due to their general and simple application to

optimisation problems due to not making strong assumptions about the problem, it

is unsatisfying that signi�cant amount of research is performed into how to perform

variation that is natural to the optimisation problem. learning the variation by decom-

posing the problem at its natural joints and applying the variation that is natural to the

optimisation problem.

However, they are limited - �rst is the issue with crossover operators. Then is the issue

with frequency and therefore diversity maintenance

2.3 Using Machine Learning to Exploit Problem Structure

One of the earlier methods for improving the evolution of evolvability is to include

hyperparamters of a GA, such as mutation rate, into the solution Altenberg et al. (1994),

The types of algorithms that transpired from the identi�cation of linkage-learning to ex-

ploit building-block structures where, Estimation of Distribution Algorithms M•uhlenbein
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and Paass (1996), Linkage-learning Algorithms Harik (1998). and Multi-scale Search Al-

gorithms Watson (2006); Watson et al. (2011). Each class of algorithm uses machine

learning methods to explicitly capture regularities present in a distribution of solutions,

there method for identifying, capture and exploiting these relationships is what distin-

guishes these algorithms apart.

The class of Estimation of Distribution algorithms (EDAs), that use probabilistic ma-

chine learning models to replace recombination operators in a GA, and Multi-Scale

Search Algorithms (MSSA), that use deterministic machine learning models to bias the

variability of a solution, are related to the approach of Deep Optimisation. They all

use a machine learning model to capture associative relationships in a distribution of

promising candidate solutions, and then exploit this to bias future search. They use

previous experience to guide future search - providing evolutionary of evolvability.

self-referential learning process

The BBH provided an inspired direction for the development of GAs. Speci�cally, the

utilisation of machine learning methods to explicitly capture regularities observed in a

distributing of promising candidate solutions. The machine learning model is the used

to adapt the search process. The type of model used and the method for exploitation

generally decides the class of algorithm. For instance, the use of probabilistic models

that generate new solutions from sampling the model are within the class of Estimation

of Distribution Algorithms (EDAs), where as deterministic models that adapt a search

operator applied to a candidate solution are withing the class of Multi-Scale Search Algo-

rithms. Never-the-less these algorithms can be classi�ed as Model-Building Optimisation

Algorithms (MBOAs). Speci�cally, a machine learning model is used to explicitly exploit

regularities in a distribution of promising candidate solutions to generate new solutions

- thus adapting the search process. MBOAs make the following assumption about a

problem: that learn-able variable combinations observed in a distribution of promising

candidate solutions can exploited to �nd superior solutions.

The distribution of solutions provides a signal for observing the �tness function response

to di�erent variants. Variation in �tness caused by the variation in the input can then be

exploited to infer structure in the problem. Selection priorities regularities in inputs that

produce a good response from the �tness function. How this information is exploited is

forms the fundamental design methods that therefore distinguish these algorithms are:

1. The Model Construction

2. The Model Capacity

3. The Model Exploitation

In both GAs and MSSAs exploit regularities that occur in a distribution of solutions

that are produced by dynamics of coordinated perturbation candidate solutions where
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selection favours high-quality individuals. This the BBH refers to a type of adap-

tive neighbourhood search - variation at the individual level, then moves to low-order

building-blocks before �nally searching in high-order building-blocks. Therefore, the

process provides a signal of regularities (solutions to sub-functions) that contribute to a

solutions quality in many contexts (background material).

In genetic algorithms, the search space is implicitly de�ned by a solutions representation

and the genetic operators (such as crossover and mutation). Inappropriate representa-

tions and genetic operators can induce additional local optima into an optimisation

problem Rothlauf (2006). The ability of the genetic algorithm to uncover and exploit

this structure is dependent on the methods for variation and selection. As such, research

has focused primarily with improving and understanding the solutions representation,

recombination operators (namely crossover and mutation), population initialisation, se-

lection and replacement methods. However, aligning the search dynamics with the prob-

lem structure requires understanding the relationships between variables for a problem

instance. Machine learning provides an powerful and automated way of extracting rela-

tionships from data. There, it comes as no surprise that machine learning has been used

to enhance both local search and population search methods. In this section we review

how machine learning has been used to enhance optimisation. In addition, this sec-

tion brie
y reviews related methods, in the sense of using machine learning to enhance

optimisation, but di�ers in the way the model is being used.

The identi�cation of which variables interact and thus form partial solutions (and should

therefore be protected) is called linkage learning: learns the linkage between variables

and groups of variables.

2.3.1 Linkage Learning

Linkage learning refers to the identi�cation of building-blocks structures. Speci�cally,

the variable combinations that contribute to a solutions quality. The idea is that by

learning the linkage information, one can design better methods for conserving building-

blocks during recombination and further search.

Holland et al. (1) - small �t similarities are propagated through search

Thierens and Goldberg; Thierens (1999) - breaks down when linkage is not tight

mGAGoldberg et al. (1989), GEMGAKargupta (1996) and LLGAHarik (1997) all at-

tempts to create tight linkage in a solution to allow for recombination, that is positionally

biased to operator e�ectively.

By reordering the linkage information to enable crossover to be more e�ective, LLGA -

relationships become physically closer together. crossover still positionally biased, but

the restructuring of the representation conserves the relationship
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In doing so this showed that buildling-blocks can be e�ciently recombined in the original

solution representation, the linkage is random

2.3.1.1 By Constructing a probabilistic model

Constructing and learning a good probabilistic model of a distribution of solutions re-

quires identifying the linkage information Harik et al. (1999a) . Learning a `good' prob-

ability distribution is equivalent to learning linkage. Constructing and learning a good

probabilistic model of a distribution of solutions requires identifying the linkage infor-

mation Harik et al. (1999a) .

Linkage learning in genetic algorithms is the identi�cation of building blocks to be

conserved during crossover

2.3.1.2 Deterministic model of the linkage

- Linakge tree algorithm - Multi-Scale Search Algorithm

2.3.2 Estimation of Distribution Algorithms

EDAs introduced M•uhlenbein and Paass (1996) EDA summary Hauschild and Pelikan

(2011) UMDA M•uhlenbein and Paass (1996) PBIL Baluja (1994) cGA Harik et al.

(1999b) - incremental univariate EDA - probability vector

use a centralised model

Generally, a genetic algorithm consists of a population of candidate solutions (usually a

vector containing an encoding that can be interpreted to represent a solution). As such

the population of a genetic algorithm contains information of the search space already

explored by the algorithm. Selection, crossover and mutation can therefore be inter-

operated as methods to exploit this information and by using selection and crossover

correctly it is possible to exploit information of good candidate solutions to direct the

search (next generation) towards better solutions. However, it is acknowledged that the

crossover operator, such as uniform crossover, can destroy important information con-

tained within the population such as dependencies between variables. Using a simplistic

crossover operator can destroy important dependencies even though, in a population

of candidate solutions, the �tter will consistently show this dependency. In such a

case, large populations are require to overcome the issue and thus renders the algo-

rithm impractical. Therefore, whilst the information of relationships that contribute to

the solutions quality is present in the distribution it also requires su�cient methods to

correctly exploit the correct information in the correct way.
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At the same time, Baluja used a probabilistic model to represent the population of a

genetic algorithm and search using the model, much in the same way as a genetic algo-

rithm. Whilst the model was simple, and was unable to capture relationships occurring

between variables. It was never the less the �rst example of using machine learning

methods to automatically capture information from solutions and then extract this in-

formation from the model to generate new and superior solutions. In doing so, this led

to the development of the class of algorithms known as Estimation of Distribution Al-

gorithms (EDAs). EDAs use probabilistic models to replace the crossover and mutation

operator used in genetic algorithms. The models are constructed to represent a distribu-

tion of promising candidate solutions { a subset of the population �ltered from the total

set using selection. The models are then sampled to generate a new subset of solutions

that replace existing solutions in the population. The models in EDAs are tasked with

both learning the probability distribution and dependencies between variables (known

as linkage learning)

Estimation of distribution algorithms (EDAs) Hauschild and Pelikan (2011) are a class

of evolutionary algorithms that use probabilistic machine learning models to replace

crossover and mutation to explore the search space. At each generation a probabilistic

model is constructed to represent a distribution of promising candidate solutions, pro-

vided by selection. Selection provides a set of promising solutions then contain variable

combinations that contribute to a solutions quality in comparison the average quality

in the population. A probabilistic model is constructed to capture the joint probability

distribution of the promising solutions. The model captures statistical dependencies

between variables from a distribution of promising candidate solutions, which in return

represent dependencies that contribute to the quality of a solution. New solutions are

generated by sampling the model. We refer to this as a model-informed generation:

a complete candidate solution is generated using a the model. The model therefore

restricts the degrees of freedom during the process of random generation and thus col-

lapsing the dimensionality of variation between solutions informed by information from

previous promising candidate solutions. New solutions generated by the model are then

introduced to the population by replacement. At each generation, a new model is con-

structed of the distribution of promising candidate solutions. The use of a machine

learning method to identify the linkage-information (dependency structure) provides a

method for removing the need to develop hand-engineered recombination operators but

at a computational cost of constructing and sampling a model.

The central method of an EDA is to maintain a probabilistic model to represent the

distribution over candidate solutions and adjust the model based on the results of the

evaluation so that it will generate a better candidate solutions in future.

Successful for a wide range of problems Pelikan and Goldberg (2003a); Aickelin et al.

(2007); Santana et al. (2008); Ceberio et al. (2013); Hauschild and Pelikan (2011)
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There are two main types of EDA's. A population based EDA maintain a population

of candidate solutions. Each iteration starts by creating a population of promising

solutions. A probabilistic model is then built for the selected solutions. New solutions

are generated by sampling the distribution and the new solutions are then incorporated

into the original population. (batch mode)

Incremenetal EDA's, on the other hand, the population of candidate solutions is fully

replaced by the a probabilistic model. The model is then incrementally updated by

sampling, generating solutions from the model, sampling their �tness and incrementally

improving the model based on these generated samples. (online mode)

The fundamental idea that forms and EDA is as follows: 1. Generate an initial popula-

tion of possible solutions 2. Evaluate the correctness (�tness of the solutions) 3. Select

a percentage of promising solutions from the solutions 4. Generate a probabilistic model

from these promising solutions 5. Generate new solutions from the probabilistic model

by sampling it 6. Incorporate the new solutions into the population 7. Repeat steps 2

to 6 until �tness function is maximized

All EDA's that are to be discussed follow these fundamental steps and they only di�er

in the method in how they carry out these steps, mainly how they build the probabilistic

model used and therefore are generally categorised in this manner

The general EDA algorithm is presented in Algorithm 1. The fundamental idea is to

Algorithm 1: The general Estimation of Distribution Algorithm

Initialize: Population of Solutions;
while Termination Criteria not met do

Evaluate the �tness of each solution Select a set of promising solutions from the
population Construct a probabilistic model that estimates the distribution of
the promising solutions set. for N in NewSolutions do

Sample the probabilistic model to generate a solution Replace a solution in
the original population with the generated solution

maintain a probabilistic model to represent the distribution over candidate solutions

and adjust the model based on the results of the evaluation so that it will generate a

better candidate solutions in future. The model is either reconstructed (constructed

from no information) in update (incremental). The majority of methods apply the

former approach. The general design decisions for an EDA are:

� The selection method for creating a distribution of promising candidate solutions.

� The Model used to capture the probability distribution - this impacts both the

model construction and sampling methods

� The replacement method for incorporating a new solution into the population
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2.3.2.1 Univariate Models

The earliest examples of EDAs used simple uni-variate models to represent the joint-

probability distribution of solutions Baluja (1994); M•uhlenbein and Paass (1996); Harik

et al. (1999b) and was an important step into understanding how machine learning

models can be used to in the framework of genetic algorithms - speci�cally, for capturing

statistics of a population and exploiting these to generate new solutions of greater quality.

However, due to using only uni-variate statistics, they were not su�cient to capture

relationships between variables and therefore not identify variable combinations that

contributed to a solutions quality (building-blocks).

- generating a new solution for a probability vector.

The Population-Based Incremental Learning (PBIL) algorithm that replaces the popu-

lation with a probability vector that is updated via incremental updates to the model.

The compact Genetic Algorithm (cGA) (Harik Goldberg, The compact genetic algo-

rithm , 1997) generates the probability vector by generating two potential solutions and

select the solution with highest �tness. The variables that di�er in the winning solu-

tion in comparison the loosing solution have their corresponding probability updated

towards the winning bit value. Like PBIL the cGA is an incremental EDA and provides

advantages with reduced memory requirement. However the limitations of all the uni-

variate models is the inability to solve complex problems due to the assumption that all

variables are independent.

In EDAs, deciding which variables conditioned on other variables, or determining the

structure of the probabilistic network, is referred to as linkage-learning. Thus linkage-

learning only refers to which variables show relationships, and not the value of these

relationships (i.e., the conditional probabilities). By capturing and conserving linkage

during recombination allows for minimising the disruption to building-blocks during

recombination.

2.3.2.2 Bivariate Models

This therefore drove the development in this �eld towards using more sophisticated

models. The next phase introduced bi-variate models into the framework. Bi-variate

models form dependencies between variables in the form of a chain De Bonet et al.

(1997), tree structure Baluja and Davies (1997) or a forest (mutliple trees) Pelikan

and M•uhlenbein (1999). By sampling the model to generate new solutions, the linkage

information between a pair of variables is conserved, allowing for an improvement when

performing building-block recombination.These model showed an improvement in the

performance on decomposable problems compared to uni-variate model EDAs due to

capturing pairwise relationships in the sub-problems. However, these models are limited
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to only decomposing the model to order two and therefore development continured to

form an implementation using a multi-variation models.

2.3.2.3 Multi-Variate Models

The most sophisticated models used by EDAs are capable of multi-variate factorisation

of the joint-probability distribution. This allows for high-order variable relationships to

be captured by the model. However, the cost of constructing the models become more

complex and computationally expensive.

Factorised Distribution Algorithm (FDA) M•uhlenbein and Mahnig (1999)- uses a �xed

factorised distribution as the model and as such the structure is not learnt during opti-

misation. Therefore requires prior knowledge of the problem structure.

The extended Compact Genetic Algorithm (eCGA)Harik (1998) constructs a marginal

product model that groups variables into independent sub-sets (variables with in a sub-

set are dependent). A greedy algorithm combines two groups together that increase the

Minimum Description Length (MDL) for the distribution model. Initially each variable is

considered an independent group. When no grouping can increase the MDL metric, the

model construction is terminated. The probability for each group is calculated from the

statistics measured in the promising candidate solution for the group. The probabilities

are then sampled to generate new candidate solutions. Therefore, the groupings will

represent building-blocks and the random sampling allows for recombination between

building-blocks. However, with this model, overlapping building-blocks cannot not be

accurately represented.

The Bayesian Optimisation Algorithm (BOA) Pelikan et al. (1999) uses a Bayesian net-

work to model the distribution of promising candidate, where a node represents a vari-

ables and an edge represents the conditional dependence between nodes. The Bayesian

network model, an acyclic graphical model, allows for a variable to be conditioned on

the value of multiple parents (unlike a tree structure).

A scoring function and heuristic search are used to construct the model due to the

complexity of constructing a Bayesian Network being an NP-hard problem. BOA uses

a greedy hill-climber and the K2 metric Cooper and Herskovits (1992). There is a

signi�cantly cost for the model construction algorithm as for each modi�cation made to

the Bayesian Matrix (addition, removal or reverse of an edge) the metric needs to be

calculated. BOA reduces the computation cost by only considering edge additions to

the network. Never-the-less the time-complexity for constructing the Bayesian network

scales exponentially with the maximum number of incoming edges (k) to a node in the

Bayesian network asNpk where Np is the number of problem variables. Thus in the

BOA, k is a tune-able parameter, with higher k allowing for higher-order dependencies

to be capture by the model.
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The BOA works by initialising a population of candidate solutions from a uniform dis-

tribution of possible solution states. The �tness of individual solutions is evaluated.

Truncation selection is then applied on the population to �lter-out promising solutions

which are then used to construct the probabilistic model (generally a 50% separation

for model-building and replacement. From the model, new solutions are generated using

forward sampling. These solution replace the sub-set of solutions from the population

that have the lowest �tness. This process is repeated until the termination criterion is

met. BOA is capable of learning overlapping dependencies, unlike ecGA, and the BOA

does not require prior de�nition of the model structure, unlike the FDA.

2.3.2.4 Hierarchical Bayesian Optimisation Algorithm

The most sophisticated, and considered state-of-the-art is the Hierarchical Bayesian Op-

timisation Algorithm (hBOA) Pelikan et al. (2003); Pelikan and Goldberg (2006). hBOA

is an extension of the BOA. The �rst extension is the use of a decision trees to represent

the Bayesian network model. In BOA, the number of conditional probabilities grows

exponentially as the number of interactions between variables grows. hBOA overcomes

this by exploiting regularities in conditional probabilities and encoding these using a de-

cision tree. This representation allows for the model to include high-order interactions

more e�ciently. hBOA uses a forest of decision trees to achieve this, with each variable

containing a decision tree that represents the variables that condition the probability

for the variable.

The metric used to measure the performance of the model during construction is based

on pairwise statistics. A greedy algorithm is used to add edges between nodes that im-

proves the performance score. The metric used during construction contains an implicit

inductive bias towards simplier models

hBOA maintains a population of candidate solutions and applies binary tournament se-

lection to produce a distribution of solutions that have better than average quality given

the population. This distribution of promising candidate solutions, containing variable

combinations that contribute to the solution quality, is used to construct a Bayesian

model. New solutions are generated using forward-sampling and replace other solutions

in the population using restricted tournament replacement (RTR) Harik. Generally, half

the population is used for constructing a model, and the same number of solutions are

generated from the model. The number of replacements is determined by RTR. This

process is repeated with a new Bayesian model created each time, no information in a

Bayesian model from earlier generations is retained.

RTR causes competition between a newly generated solution and the existing population

to be similar - prioritises competition between similar solutions rather than at random.
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A window size de�nes the size of the niche - a window size the size of the population

will ensure that the nearest solution in the population is used for competition

hBOA is used through-out this thesis as a state-of-the-art EDAs. It has proven to

be e�ective at solving a wide range of optimisation problems Pelikan and Goldberg

(2003a); Pelikan (2010) and is often used as a state-of-the-art example when developing

new algorithms Thierens and Bosman (2013); Goldman and Punch (2015); Hsu and Yu

(2015)

2.3.2.5 Neural Network Models

Arti�cial neural network models (NN) have provided state-of-the-art results in domains

such as classi�cation, regression and generative tasks. A NN consists of an input, hidden

and output nodes that are connected via weights. The network computes an output

from an input. The function the network computes is trained. Greater detail about NN

models is provided in Chapter 4.

Neural network models provide advantages over other machine learning models used by

the state-of-the-art EDAs. They are 
exible, high capacity models that use e�cient

learning algorithms to construct to approximate a function. In addition, NN models

used hidden variables (latent variables) for representing relationships between that com-

pute the output of the network. It is known in Bayesian network models, the inclusion of

hidden variables for representing dependencies between variables reduces the complexity

of the network when capturing high-order relationships Elidan et al. (2001). A disad-

vantage of NN models is the black-box nature, where understanding what the model has

learnt is an open and ongoing area of research.

The idea of using a neural network as the model an is not novel. Santana Santana (2017)

provides a brief but excellent overview of the algorithms that use a neural network within

the framework of EDAs. However, in the domain of EDAs, and more generally using

learning to improve optimisation, neural network models have failed to provide state-

of-the-art results Churchill et al. (2014a); Probst (2015). Considering state-of-the-art

performance is achieved using a NN in other domains were alternative machine learning

models, such as the Bayesian Network, are applicable, it is somewhat surprising for a

NN to show inferior performance.

In general, EDAs that use a neural network have are generally limited to a single layer

network Probst (2015); Churchill et al. (2014a); Santana (2017) and proceed in the

typical framework of EDAs, where the NN is sampled to generate new solutions.

A hypothesis for why SOTA performance has not been achieved is due to the limitation

of the depth of the NN. A deeper network provides additional capacity to the model and

allows for abstraction of higher-level features from the data-set. However, little research
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has focused on using a deep NN. Examples of algorithms that use a deep neural network

are the Deep Boltzmann Machine Estimation of distribution Algorithm (DBM-EDA)

Probst and Rothlauf (2015) and the Deep-Opt Genetic Algorithm Baluja (2017). For

DBM-EDA, the model is

DBM-EDA a deep Boltzmann machine (DBM) with two-hidden layers as the model. The

DBM is trained to learn the probability distribution of the selected candidate solutions

and then sampled to generate new solutions. In Deep-Opt GA, the model is used to

approximate the �tness function. New solutions are then generated using a technique

called network-inversion where the back-propagation algorithm is used to modify the

inputs into the network rather than the weights (as done during training). Whilst

not technically inline with a the EDA framework as the model captures relationships

between input variables and the �tness values, rather than just the input variables, it is

never-the-less su�ciently related and a rare example of using a deep neural network to

improve evolutionary search. In both cases, there is no evidence for understanding why

and if a deep network provided a performance improvement to the algorithm compared

to a shallow model. Therefore an important question remains, what type of problem

structure can a deep NN model capture that a single layered (shallow) NN cannot.

Understanding how to utilise a NN model and exploit a deep representation remains

an open and promising area of research. The main design decisions is for how to train

the neural network model, i.e., what information the network is modelling and how to

exploit this information to improve the candidate solutions.

A signi�cant advantage of a NN model compared to other machine learning models used

by EDAs is its 
exibility. For instance, an Autencoder model can be used in a variety of

ways and interpreted as a probabilistic model that captures the distribution of a data set

or as a deterministic dimensional compression of the dataset. Therefore, a NN advantage

also is its disadvantage as it opens up many questions for how to use to model, in terms

of both training and exploiting the information. Much of the literature has remained

faithful to the EDA framework.

Performance outside of optimisation has shown that deep models provide can learn

meaningful structure to provide SOTA performance.

Neural network models provide a method or representing the problem structure using

latent variables. The design decision therefore open are how to exploit the information

available in the latent variables. In Deep Optimisation this is achieved by interpreting

the latent variables as a transformed and compressed solution space of the layer below.

Probst - computationally fast when compared to constructing a Bayesian network. but

not as good as power

advantages and disadvantages listed by Santana:
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� Flexible Models - Able to model complex dependencies - multivariate models(5)

� E�cient learning algorithms (25, 121)

� natural and proven parallelism via GPU (26)

� naturally applied for transfer learning (25)

Disadvantages:

� sampling can be cumbersome

� NN sensitive to initial parameters used for training

� Representation of the latent space, doesn't always correspond to representation of

problem

� large number of parameters for learning

� over �tting

neural network models are less restrictive that the models using in EDAs, and therefore

the methods for exploiting the model information generally vary between the work

A limitation is their 'black-box' nature and therefore causes complexity when attempting

to understanding and interpreting the models performance.

Probst (2015)

number of hyper parameters associated with these models. Therefore, in optimisation,

However, evaluation of there performance has failed to produce state-of-the-art results.

highlight that deep network models can provide signi�cant advantages however attempts

thus far have not been competitive va let alone outperforming other state-of-the-art

methods. is there a reason that this is not just due two learning The relationships But

also so so e�ciently and accurately exploiting relationships.

but designing and understanding methods that use deep learning have proven unsuc-

cessful and thus far - is that because we are unsure how to utilise the depth of model

2.3.3 Multi-Scale Search Algorithms

Natural selection acts on the phenotype, the variability of a phenotype is biased by

previous experience

Multiple levels of phenotypic representation - Deep Optimisation
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A less well-known class of optimisation algorithms is Multi-scale search algorithms

(MSS). MSS algorithms are inspired by the developmental dynamics observed in natu-

ral evolution to provide adaptive variation Watson and Szathm�ary (2016); Uller et al.

(2018). Speci�cally, a solution is updated using variation operators that are re-scaled

to successively higher-orders of organisations. The variation operators are constructed

from relationships observed in previous solutions that contributed to a solutions quality.

A fundemental di�erence from GAs, is that the indivudal �ttness is prioritised.

E�ciency due to accepted solutions during update containing implicit information about

the solution space Incorrect partial solutions are immediately rejected due to selection

neglecting updates that provide a deleterious change.

Associative relationships such that solutions that are were previously far away become

closer. - model space

Multi-Scale Search Algorithms (MSSA) are an alternative approach to providing a source

of adaptive variation inspired by the BBH and evolutionary processes. Like EDAs, they

use machine learning models to capture building-block structures from a distribution of

candidate solutions and exploit this information to improve the search process. However,

they di�er namely in the methods used to exploit information during search. In EDAs,

search is preformed by random recombination of partial solutions - the model is used

to generate complete candidate solutions. In MSSAs, search is explicitly performed at

the scale of building-blocks - the model is used to rescale the search operator to higher-

orders of organisation Iclanzan and Dumitrescu (2007); Watson et al. (2011); Watson

(2006); Mills and Watson (2011); Mills et al. (2014). We can therefore describe the idea

of MSSA as adapting a local-search method to search in the space of building-blocks.

Therefore, an important distinction between EDAs and MSSAs is that in an EDA the

performance of a population is prioritised over the performance of an individual (al-

though this is not strictly true in hBOA). In the case of a MSSA, the performance of

an individual is prioritised. In EDAs, promising solutions provide information about

the natural structure of an optimisation problem. MSSA make the same assumption,

however, the set of promising solution is determined in an alternative way. In general,

for EDAs, solutions that have above average �tness (by rank) are considered as the set

of promising candidate solutions. However, in MSSA, each solution, that has been un-

dergone local-search is considered a promising candidate solution. This has implications

that are discussed in Chapter??.

A MSSA can be interpreted as a repeated local search algorithm that adapts the search

neighbourhood according to observed relationships from previous attempts (its own dy-

namical experience). Thus, at initialisation, the search operator is naive, and allows for a

natural exploration of the search space, e.g. for a binary solution a 'bit-
ip' operator can

be suitable and its performance is equivalent to a local search algorithm. Local search

then proceeds in a new, rede�ned neighbourhood where variation of solution constitutes
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to simultaneous changes to multiple variables rather than, the original lower-order op-

erator of, single variables. Thus, the algorithm adaptive reduces the dimensionality of

the search space and is biased to exploiting regularities that occur in a distribution of

locally optimal solutions found in the higher-dimensional search space.

Local Search (LS), provides an e�cient method for optimisation by prioritising only

local alternatives during search. A solution is updated on the basis of selection crite-

ria and a neighbouring solution. For a hill-climber, the selection criteria is based only

on the solution quality. Solutions outside the local neighbourhood are not considered.

The neighbourhood is repeatedly checked for superior solutions and if no neighbouring

solution has a greater �tness than the current solution the algorithm is said to have

converged. First-improvement hill-climbing refers to an interactive procedure that ran-

domly selects a single neighbouring solution. The solution updates the current solution

if it has a greater solution quality. Greedy local search evaluates all neighbours of the

current solution and updates it with the solution that has greatest solution quality.

LS is biased to exploiting local information about the problem structure (search space).

The performance of LS is strongly in
uenced by the current solution and the neighbour-

hood of the solution. Therefore, unless the problem contains a single attractor, or the

initial solution is in the correct basin of attraction for the global solution, local search

will fail to �nd the global optimal solution. Thus the main weakness of a LS method

is that they become easily trapped at sub-optimal solutions, where no neighbouring

solution has a greater quality that the current solution yet withing the possible set of

solutions there exist a solution with greater quality.

The success of local search is therefore dependent on the alignment of the neighbourhood

and the problem structure. Of course this requires understanding the problem structure.

If one can learn and understand the problem structure of the optimisation problem, one

can develop local search methods to exploit the problem structure. For well-behaved

problems, where regularities in the problem structure exist for a large sub-set of problem

instances ,this can be particularly e�ective and worth the human e�ort to develop meth-

ods. A successfully example is the Lin-Kernighan heuristic for the symmetric travelling

salesman problem Lin and Kernighan (1973). By developing local search methods to

exploit the problem structure, it is possible to e�ciently search in the solution space of

a CO problem.

Alternative methods to overcome the weakness of LS becoming trapped at sub-optimal

solutions include restart, or multi-start, methods. Restart methods use a single solution

instance. The solution is updated using local search. After local search terminates,

the solution is reinitialised. Multi-start local search uses multiple solution instances,

with each instance being update using local search. There is no performance di�erence

between the algorithms. Rather multi-start local search provides a distribution of so-

lutions that are at an attractor of the solution space. Importantly for MSSA restart
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methods allow for e�cient exploration of multiple basins of attractors in the solution

space. However, these methods use no information about previous solutions.

Examples of methods that do use information about the solutions found thus far are

Iterated Local search (ILS) and Tabu Search (TS) Glover (1989) and Simulated An-

nealing Kirkpatrick et al. (1983). However, the information exploited is only based on

memory, either the best solution found so far, or which solutions have been already

explored. MSSA on the other hand work by learning and exploiting the realtionships

between variables that contribute to a solutions quality.

MSSAs share similarities with the well-known Variable Neighbourhood Search (VNS)

method Hansen et al. (2010). VNS work by performing local search if a �xed set of

neighbourhoods that are manually de�ned prior to searching in them. However, in

MSSA, the idea of search in a new neighbourhood is shared with VNS, but MSSA

instead adaptively reorganises a solution neighbourhood by capturing relationships from

a distribution of solutions found in the current neighbourhood.

MSSA induce a new and intelligent space to search in by capturing relationships found

in a distribution of solutions that have been hill-climber and therefore locally optimal

relative to the current solution neighbourhood. The local optimal solutions provide infor-

mation about the natural basins of attractors and speci�cally the relationships between

variable combinations that contribute to the solutions quality. A model is used to learn

and capture these relationships. The information is then used to transform the search

operator to higher-orders of organisation, e�ectively transforming the neighbourhood of

the solution such that partial solutions that were not local in the original neighbourhood

become neighbours. Search then continuous using this neighbourhood, either by reinitil-

ising a solution Watson et al. (2011) or updating the exisiting population Iclanzan and

Dumitrescu (2007).

The advantage of a LS is that it provides an e�cient method for locating basins of at-

tractions in the solution space. MSSA use the information contained in these basins of

attractors to addaptively reorganise the solution landscape such that basins of attrac-

tions become neighbours at the new search space - an e�ective dimensional reduction of

the search space Watson et al. (2011). An attractor, in terms of optimisation problems,

de�nes a solution in the solution space that for a large number of solutions will tend

towards. Therefore, we can interpret this as solutions within the basin of attraction

will regularly lead to this basin. Thus we can assume that the possible set of variable

combinations within basin of attractor can be compressed to the correct sub-set of vari-

able combinations - reducing the dimensionality of the search and thus subsequently

adapting the neighbourhood of the solutions space. The attractor is de�ned by the

relationships between variables that contribute to a solutions quality. The attractor's

provide information about regularities in the search space that contribute to a solutions

quality. By modelling the information of �xed point attractor provides a method of
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dimensional reduction of the solution space Watson et al. (2016). The reorganisation

of the neighbourhood, via exploiting correlated variables, changes the e�ective �tness

landscape for the solution. Speci�cally, �tness valleys between between these points in

the solutions space are no longer present - a new �tness landscape is presented to the

solution, as de�ned by the new neighbourhood and the �tness di�erences between these

two points. The e�ect on the �tness landscape is a course-grained representation. For

instance, we can reduce the dimensionality of the search space as we can infer that all

solutions in the basin of attraction will lead to the attractor. Reducing the dimension-

ality of the solution space by transforming multiple variables into a single higher-order

unit. Search then continues using the higher-order units to explore the solution space.

Searching at this level of representation provides a method for escaping local optimal

solutions, by allowing larger changes to a solution and to follow the �tness gradient

observable between basins of attraction as illustrated in Figure 4.1. At a higher-level,

many small basins of attraction can be withing a larger basing of attraction which can

be easily followed when the algorithm is capable of searching in the higher-order units

of partial solutions Watson et al. (2011); Mills et al. (2014).

Figure 2.2: Problem structure for the manifold theoretical optimisation problem. The
gradient is simple to follow if an optimizer can model and separate the directions of

variation and hill-climb

Reducing the dimensional of the search space is achieved forming coordinate relation-

ships between variables and appropriately separating them at the natural joints to form

interchangeable building-blocks. This reduction in dimensionality of a search space is

directly linked with the theorem of why GAs can perform well using crossover. The

Building-Block Hypothesis states that variable combinations that contribute to a so-

lutions quality are sampled and recombined to generate solutions with higher solution

quality. Thus search is performed at a higher-level of organisation, search has adapted

from searching each dimension individual to searching in variable combinations. In a

GA, the exploitation of building-blocks is implicit in the crossover operator. Therefore,

in order for recombination e�ective, the recombination operator - being crossover in GAs

or the sampling method in EDAs, must conserve the building-blocks during search. In



Chapter 2 Foundations 37

MSSA, building-blocks are explicitly exploited by searching in the space of building-

blocks. Searching in the space of building-blocks can be interpreted as re-scaling of the

search operator. For example, the search operator is a single-variable substitution at

�rst, then, after the identi�cation of partial-solutions, the search operator is adapted to

searching in partial-solutions - a higher-order search operator.

The general MSSA is presented in 2. A distribution of solutions is used and a model is

either incrementally updated by each solution ( online learning method) Mills (2010);

Watson et al. (2011); Cox (2015) or constructed using a distribution of solutions (batch

learning ) Iclanzan and Dumitrescu (2007). At �rst, the algorithm searches in the

space of the primitive units to identify structural correlations. It is important for the

performance of the algorithm that search provides a natural and unbiased exploration

so that misleading correlations are not induced. This is then used to rede�ne the search

operators of the search space. A model is then used to capture the relationships between

variables in the distribution of solutions that are locally optimal in the current solution

neighbourhood. The model is then used to reorganise the solutions neighbourhood and

each solutions in the distribution is updated by performing local search in the new

rede�ned neighbourhood. A solution is optimised by iteratively updating the solution

using partial solutions - each attempt of changing or including a partial solution to

the current solution is checked via selection. Thus adaptation of the search operator

(or solutions neighbourhood), via learning associative relationships between variables,

adapts the partial solutions applied to the solution, and therefore the neighborhood of

solution.For a binary optimisation problem a local search that is often used to search in

the local neighbourhood is called a 'bit-substitution': a random variable of the solution

is replaced with the variable value with a 1 or a 0. The search method is the lowest-level

variation operator available and allows for all possible solutions to be explored.

The principle algorithm is similar to the EDA algorithm. A model captures the re-

lationships observed from a distribution of candidate solutions. Each solutions in the

distribution is update by local search and therefore all solutions in the distribution are

considered promising candidate solutions. The fundamental di�erence from EDAs is that

the model is used to transform the neighbourhood of a solution. Instead of generating a

random combination of building-blocks, the search operators of a local search algorithm

are rescaled to higher-orders of organisation providing a method of combining and eval-

uating each building-block separately. Like EDAs, the algorithm repeats the cycle of

improving solutions and learning information from these solutions to improve the next

iteration - the model captures higher-order regularities at each iteration. The original

high-dimensionality of the problem is reduced to progressively lower-dimensionality by

adapting the search operator to successively higher-orders of organisation

The solutions found at after each iteration are a product of the own dynamical behaviour

of the algorithm. If the distributions of solutions is not su�ciently to allow identi�cation
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of problem structure, or the model is unable to capture the relationships between vari-

ables, then the induction of spurious relationships are possible in the model. Exploiting

this information can therefore lead to the algorithm converging on inferiorior solutions.

Thus the performance of the algorithm is dependent on its own dynamical behaviour

Algorithm 2: The general Multi-Scale Search Algorithm

Initialize: Model;
while Termination Criteria not met do

Initialize: Solution;
while Optimising Solution do

Make partial change to solution, de�ned by model;
if Partial Change improves solution quality then

Accept partial change to solution;
else

Reject partial change to solution;

Update the model using optimised solution;

In comparison to EDAs, there are relatively few examples of MSSA. However, the design

decision for MSSA methods generally relate to initialisation of a solution, the model used

to capture relationships between variables and the methods for the rede�ning a solutions

neighbourhood by exploiting the information from the model.

The Building-Block Hill-Climbing algorithm BBHC Iclanzan and Dumitrescu (2007) is

one of the �rst examples of a MSSA. It performs local search on a distribution of so-

lutions that are locally-optimal before then using these solutions to construct a model,

representing a bijective mapping from building-block to variable i.e., which variable be-

longs to which building-block. The con�guration of a building-block (the values of the

variables in a building-block) are extracted from solutions that have undergone hill-

climbing. Thus, the model in BBHC learns the linkage and the variable assignments for

search. Hill-climbing in the space of building-blocks is then performed by selecting a

building-block and evaluating the change in the solutions quality for each possible con-

�guration of that building-block (model-exploitation). The con�guration that provides

the greatest increase in a solutions quality is then kept. This is repeated on all solutions

before a new model is then constructed. Whilst the BBHC provde e�cient compare to

EDAs, the something about complexity of learning and model - cannt recall

and the BBHC makes no attempt at biological plausible mechanisms for evolution.

Watson however has provided a connection between MSSA and biological evolutionary

processes, namely the evolution of the developmental process Watson et al. (2011, 2016).

Watson's recent connections in evolution and learning Watson and Szathm�ary (2016)

suggest that the development process is able to facilitate a type of learning that can

exploit information from previous experiences. This is acheived by a separation of time

scales between updating a solution (local search) and updating the model. facilitates
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a mechanism of evolution updating the developmental bias of developmental process

of an organism. The developmental bias provides a method for learning correlation

between variable than enables a transition from updating individual units simultaneous

updates to multiple variables Watson and Szathm�ary (2016). The interaction between

the inner and outer loop is connected with with the theory of evolving the developmental

process in biological evolution, and speci�cally the separation where the update made

by development is performed multiple times, or has a stronger e�ect, than the update

made by evolution. In biology, development facilitates adaption within the life-time of

an organism. At the evolutionary time scale however, adaptation occurs over multiple

generations, i.e., many development cycles. This is capture in MSSA by controlling the

learning rate in online, or controlling the distribution size in batch mode.

The space for which development acts on is evolved over time, from individual evolu-

tionary units, that form associative relationships to form higher-order evolutionary units

that construct building-blocks. The Evolutionary Transitions in Individuality (ETIs),

observed in biology West et al. (2015), provide an additional inspiration to develop

evolution algorithms. Speci�cally, evolutionary processes operating over multiple levels

of organisation. have the characteristic that multiple individuals at one level of or-

ganisation form associations that result in a new evolutionary unit at a higher level of

organisation Smith and Szathm�ary (1997); Watson and Szathm�ary (2016). For example,

unicellular life transitioned into multi-cellular organisms | and these are not merely co-

operative relationships among co-evolving unicellular organisms but new evolutionary

units. These new units allow combinations of units from the previous layer to be Each

subsequent layer re-codes again, in the analogue of successive hierarchical transitions in

individuality Watson and Szathm�ary (2016).

Evolutionary search using evolutionary units - an evolutionary unit is adapted over

evolutionary time. At initialisation, the an evolutionary unit corresponds to the lowest-

order building-block - an individual variable of a solution. Over time, higher-order

evolutionary units develop from the a combination of low-level evolutionary units -

thus a higher-order evolutionary units is a transformation of a combination of low-level

units. At this higher-order representation, the higher-order evolutionary is used during

search allowing for simulatenous change to multiple variables before selection acts -

the same process that acted on the low-level evolutionary units. Thus, in MSSA, the

adataptie response is a product of coordinated restructuring of the search operator, or

neighbourhood space of a solution.

In relation to searching for a solution to an optimisation problem. Development provides

a method for updating a solution within lifetime and its search is biased by the units it

acts up. Initially, these units are at their most primitive - individual solution variables.

Over time, these unit for associative relationships transforming the set of units into a

coordinate unit that variation and selection can act-upon. In evolution, this is referred

to as evolutionary transitions in individuality.
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Examples of algorithms that demonstrate this connection are the Schema Grammer Cox

(2015); Cox and Watson (2014b), MACRO Mills (2010); Mills et al. (2014) and rHN-G

Watson et al. (2011). They perform an online adaptation of a neighbourhood Mills

(2010); Watson et al. (2011); Cox (2015) by making incremental updates to the model

after each solution has been optimised.

In this thesis, we concentrate on the algorithm of rHN-G due to its connection with

developmental process, used of a simple correlation learning model and e�cient model

exploitation and ability to capture hierarchical structures. rHN-G is used as a predeces-

sor for the development of Deep Optimisation.

rHN-G Watson et al. (2011) can be described as a random-restart hill-climbing algorithm

which contains an inner-loop and outer-loop. The inner loop is a hill-climbing algorithm

that performs optimisation of a solution. The outer outer loop resets the solution using

a random initialisation and updates the model using the optimised solution to adapt the

neighbourhood of the next solution. As rHN-G is an online approach, the restart allows

for exploring di�erent basins of attraction in the solution space of the problem.

The reorganisation of a solutions neighbourhood is achieved by creating associative

relationships between variables via Hebbs rule - `what �res together wires together'.

The strength of the association between variables is then used to determine whether

variables form a higher-level unit during variation. Speci�cally, if a single variable is

to change, what other variables should also change and in what direction - positive or

negative correlation with the variable. The probabilistic threshold of the strength of

associates is used to construct a partial solution to substitute into the solution that

contains the variable selected to substitute, thus rescaling the search operator to higher-

orders of organisation. The inner loop proceeds as normal, accepting changes that make

an improvement to a solutions quality.

As the name suggests, rHN-G is based on the dynamical behaviour of a Hop�eld network

Hop�eld (1982). By encoding an optimisation problem into the connection matrix, the

Hop�eld network will converge to point attractors in the optimisation problem. By

observing the dynamics of the Hop�eld network as it converges to point attractors, the

algorithm is able to learn the underlying structure to the optimisation problem with

simple associative learning mechanisms. In the learnt model, each variable is connected

to all other variables describing a complete undirected graph or correlation matrix. The

weights between discrete states form a connection matrix and its values come to re
ect

the constraints of the optimisation problem to be solved. For an optimisation problem

that has constant self-weights (! ii = 1), symmetric constraints ( ! ij = ! ji ) and uses

the energy function in Eq. 2.1, it can be guaranteed that the network will �nd locally

optimal solutions of the �tness landscape given su�cient time to relax Hop�eld and



Chapter 2 Foundations 41

Tank (1985).

ES = �
NX

ij

! ij Si Sj (2.1)

In replacement of using the Hop�eld equation of motion to relax the system, rHN-G

deterministically performs updates to the Hop�eld network: equivalent to a gradient

descent algorithm. Here a variation operator is applied to the current state:

S0(t) = f S1; S2; : : : ; � SX ; : : : ; SN g; X � U(1; N ) (2.2)

If the change in state causes the total energy to reduce then the state is kept:S(t +1) =

S0(t), otherwise the state is rejected: S(t + 1) = S(t). Thus, rHN-G updates the

state by stochastically changing variables in the state only if it decreases the system's

energy. This is a process conventionally used in stochastic local search and mutation

based evolutionary algorithms. Given su�cient number of iterations of this energy

minimisation process, the solution will converge to a local optimum present in the �tness

landscape. rHN-G then applies Hebbian learning HEBB (1961) to update its pairwise

correlation matrix M which represents the observed correlation frequency from past

potential candidate solutions. As such, learnt matrix M can be regarded as an associative

memory model of the local optima of the optimisation problem. Initially the correlation

matrix M = 0 and is update after each constructive selection process,T (time to reach

a local optimum or a pre-determined number of iterations):

mij (T + 1) = 
 [mij (T) + �S i (T)Sj (T)] (2.3)

where 
 is a linear threshold function capping the learnt correlation strength to a mag-

nitude of 1 and � is the learning rate. Given that the locally optimal solutions contain

information about the problem structure it is then possible to learn the underlying

structure of the original optimisation problem.

rHN-G starts with a randomly initialised solution state. After relaxing the Hop�eld

network, Hebbian learning is used to update the correlation matrix. The solution state

is then reset (restarting the Hop�eld network solution) to a random solution state from

a uniform distribution and the process iterated until the global optimum is reliably

found. Resetting the solution state to a random con�guration allows for exploration of

the solution space necessary to learn its structure. By remembering information from

each locally optimal solution that is visited, rHN-G is able to learn the optimisation

problem structure.
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2.3.3.1 Using the model to identify partial solutions

What di�erentiates rHN-G from other methods is the way that selection is used in the

process that generates samples from the learnt model. Speci�cally, it uses the corre-

lation matrix to (probabilistically) perform a state change to multiple state variables

simultaneously (creating a new search process at a higher scale of organisation) and in-

terleaves this with selection. This can be interpreted as modifying the variation operator

to perform a block substitution instead of a single-bit substitution.

A block is constructed probabilistically from the learnt pairwise correlation matrix M .

A discrete variable is �rst selected, SX ; as the decision variable of the block that will be

created, SB . The probability of other discrete variables, Sj , being included in the block

is determined by the strength of the correlation with SX . For each block-substitution,

a random number, r , is generated fromU(E[M ]; 1) which sets the threshold correlation

strength required to be included in the block. As M ii = 0, the identity matrix is added

to M so that at least a single variable is changed in each substitution (the correlation

matrix for a single-bit substitution simply being the identity matrix). If the strength

of the learnt correlation is greater than the threshold limit r , then the discrete stateSj

is added to the block otherwise the state variable does not change value. The sign of

the correlation determines if the state agrees (positive) or disagrees (negative) with the

parent state once substituted. This generates the new state variableS0 and is selected

if it increases the �tness, hence an example of constructive selection.

Initially, before the correlations have been learned, rHN-G will act as a simple-hill

climber performing only a single-bit substitution for generating new samples. As it

learns from the distribution of local optima that it samples it will transform the single-

bit substitution operation to perform block-substitutions, increasing in size over time.

Hence rHN-G rescales the search space to lower dimensions (searching combinations of

partial solutions/blocks).

The model is not being used to generate complete candidate solutions on its own, as BOA

does, rather the model is being used to generate partial solutions. The process of creating

a complete candidate solution involves an iterative loop of substituting these partial

solutions into the full solution. Selection is used to determine whether the full solution

�tness has been improved and if so the partial solution is retained, i.e. constructive

selection. The evolution of a solution state for an MC problem shown in Fig. 2.3 shows

this behaviour where partial solutions are replacing the full solution in order to provide

better �tness.

Appling the MC problem to rHN-G, one can clearly see that the connection matrix in

rHN-G is equal to the constraint matrix in the MC problem, with the energy function

being equal and opposite to the �tness function (minimising the energy �nds higher

�tness).
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Figure 2.3: Example state (solution) con�guration during one constructive selection
process on an MC problem (N = 100, n = 10) after learning from 15 training examples.
This shows that block-substitutions that improve �tness (changing multiple solution

variables simultaneously) can occur because they are informed by the model.

rHN-G Watson et al. (2011) - online learning - separation of time scales - most related

to DO

rHN-G works in online mode and uses generative associations between variables to trans-

form the neighbourhood - the neighbourhood is problematically determined.

Results show that MACRO is more e�cient than BOA Mills et al. (2014) - in Chapter

we show that rHN-G can solve problems BOA cannot.

rHN-G di�ers from the BBHC as it uses a probabilistic interpretation of the correlation

strengths to determine the partial solutions. In doing so, this allows for a hierarchical

representation via di�erences in correlation strengths between variables. As shown in

Chapter 6, rHN-G is capable of representing hierarchical structures by a di�erence in

the strength of the correlations between variables. However, the model is limited to non-

overlapping structures. Mills Mills et al. (2014) described this di�erence as soft-joints

and hard-joints. Hard-joints make discrete and explicit joins between variables such

that higher-order unit is a discrete representation of the lower-level variables (there is

no intermediate representation, the strength of the dependencies between the variables is

the same for all variables involved.). Where as soft-joints are interpreted problematically

and therefore a building-block is never discretely represented by a higher-level units, it

is rather problematically determined, with the strength of the dependencies between

variables used to de�ne likelihood of a variable contributing to a building-block.

Summary of MSSA - why we are interested in MSSA, how this is linked to

Deep Optimisation. In all this, MSSA uses relatively simplistic models compared to

EDAs. Thus their capacity to represent relationships between variables is inevitably

lower than those used by the SOTA EDAs. One notable di�erence is the abilty to
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capture overlapping dependencies betwee variables. However, results show an e�ciency

improvement that by MSSA, and results that show EDAs can be improved by local search

intuitively inferring this would also hold for higher-order units, there are no results that

show what MSSA can solve that EDAs cannot.

Important distinction is that these algorithm decided the linkage and value of the vari-

ables.

Advantage - more e�cient that EDAs on trap functions Cox and Watson (2014b); Mills

et al. (2014); Iclanzan and Dumitrescu (2007), but no evidence of what can do that

another cannot. In chapter ?? we show MSSA is able to outperform BOA even when

the correct model is provided.

Main limitation is the model used is weak compared to EDAs, single level of organisation

(even though called MSS)

The performance of MSSA is strongly in
uenced by the initialisation of a solution (the

starting position in the solution space) and the neighbourhood of a solution).

The exist no neural network model that utilises the idea of multi-scale search - yet neural

network models provide a method for multi-level representation, therefore providing a

truely multi-scale search algorithm.

2.3.3.2 Local Search and EDAs

Substructure search Local search has been used to initialise a population of solutions

to improve the performance of an EDA Pelikan and Goldberg (2006); Bosman and

Thierens (2011). In doing so, it has been shown to signi�cantly reduce the population

size and also the number of function evaluations required for an EDA to �nd the global

optimum solution Bosman and Thierens (2011). The performance improvement has

been attributed to local search providing a clearer signal for the relationships between

variables that improve the quality of a solution Radetic and Pelikan (2010).

Using local search to initialise the population of an EDA is often refereed to as a hybrid

method. Hauschild and Pelikan (2011); Hsu and Yu (2015)

However, this hybridisation brings them more inline with the idea of multi-scale search

However, the use of local search is not consistent with the algorithm. Local search

is generally only applied to initialise that solution and therefore seen as an additional

process added to an EDA. Thus, EDA methods that use a local search to initialise a

population are often referred to to as hybrid versions
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Sub-structure search in EDAs Lima et al. (2006) exploit the linkage information con-

tained within the probabilistic model. Applied via mutation operator Sastry and Gold-

berg (2004).

Due to the performance improvement provided by local search, it has been hypothesised

that applying local search on newly generated candidate solutions would provide a per-

formance bene�t. - memetic algorithms . However, because the local-search is limited

to the original representation, as the population search proceedes, the e�ectiveness of

local search reduces.

The identi�cation of the performance improvement local search provided to an EDA

inspires the idea of incorporating local search in a more consistent way. Namely, by

conserving relationships between variables, identi�ed by the model to during local search.

Lima Lima et al. (2006) exploited relationships in the Bayesian network of BOA to

adapt the search operator for local search, searching in a substructure neighbourhood

and subsequently improving the performance of BOA.

local search to initialise the population , signi�cantly reduce the population size, and

improve performance - clearer signal for building-blocks hybrid method, mutation oper-

ator

EDA's initialise using local search in the original variables. And know this improves per-

formance. Therefore, it should be intuitive to abstract this to all scales of representation.

Or at the very least, the model is capable of hill-climbing

As discussed later in this chapter, Model-building optimisation algorithm appear to

dismiss the variation available by mutation. In fact, a single-point mutation applied

to a EDAs is often refereed to as a hybrid algorithm - a mixing of local search and

probabilistic generation. Yet, they are simply methods for providing variation.

2.3.3.3 Linakge Only Models

How these algorithms di�erentiate and relate to MMS and EDAs Where it

currently is What is missing How this thesis relates to this

Similar to the idea of MSSA is the set of algorithms the linkage-tree Genetic Algorithm

(LTGA) Thierens (2010), Parameter-less Population Pyramid (P3) Goldman and Punch

(2014) and the Dependency Structyre Matrix Genetic Algorithm (DSMGA) Hsu and Yu

(2015). The are separated from the MSSA, due mainly for what the model is used

for. The model is used to only capture the linkage information between variables. The

linkage information is then used as a crossover mask between two parent solutions. The

algorithm is inline with MSSA becasue eat each
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An alternative approach to MSSA is to construct a higher-order representation of the

search operator Thierens (2010).

As highlighted in the review of multi-scale search algorithms, the models used are rela-

tively simplistic in comparison to the state-of-the-art machine learning models and also

in comparison to the SOTA EDA - hBOA. The algorithms appear suitably disjoint as

to ignore one of the classes.

However, the Linkage Tree Genetic Algorithm (LTGA) Thierens (2010) bridges the gap

between MSSA and EDAs. Further, LTGA outperforms hBOA on numerous benchmark

problems in terms of scalability and computation time Goldman and Punch (2015);

Thierens and Bosman (2013); Hsu and Yu (2015). As we review next, whilst not strictly

and EDA, its similarity can not be simply ignored. Rather, it

More recently, the development of EDAs have moved towards using the model to inform

partial changes to a solution by providing crossover masks. Approximating a method of

searching in a new neighbourhood, but still no explicit

The separation building-blocks is referred to as linkage learning { which variables are

members. Linkage learning doesn't associate with representing the partial solutions. It

is only concerned with identifying which variables should be varied together. The value

of these variables is not modelled. The values are taken from the populations

A model of the underlying problem structure is created by measure

Creating a model that represents which variables are correlated. Many methods con-

centrate only on linkage-learning. P3 and LTGA are state-of-the-art examples of this

approach (literature recvew on these method - pelikan gave some).

LTGA Thierens and Bosman (2013) uses agglomerate clustering to construct a hierar-

chical tree compression of the linkage information. The linkage information is provided

by the dependency structure matrix (DSM), representing the variation of information

between two clusters, populated from a distribution of promising solutions. Each vari-

able is initially considered a separate cluster. After each clustering step, the DSM is

updated to include the clustering. The outcome is a tree data-structure of linkage-sets,

with each set representing a compression of lower-order linkage-sets.

New solutions are generated by applying a MIV method to the candidate solutions;

referred to as optimal-mixing: As a generalised analogue of crossover in sexual recom-

bination, the constructed linkage-set determines which variables to exchange between

solutions. The model thus represents the structure of dependencies between variables,

not the values assigned to variables. Values are constructed from a random solution

drawn from the population. As such, the variation applied to a solution is dependent on

the population and linkage-set. Each linkage-set is utilised by traversing the tree with
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each bene�cial exchange being kept. This is applied to all solutions in a population. A

new model is then constructed using the new distribution of solutions.

The Linkage Tree Genetic Algorithm (LTGA) Thierens (2010); Thierens and Bosman

(2013) uses an incremental tree linkage-set as the model. LTGA maintains a population

of candidate solutions. The model is constructed using a distribution of solutions selected

from the population using binary tournament selection. New solutions are generated by

applying model-informed variation to all candidate solutions in the population. The

method of model-informed variation is performed using optimal mixing: each solution

exchanges information with all solutions in the population. The constructed linkage-set

is used to determine which variables are exchanged between solutions. The process is

repeated, constructing a new model each time.

The incremental-linkage set is generated by �rst constructing a dependency structure

matrix (DSM). The DSM represents the pairwise dependencies between variables. The

strength of the dependencies represents the measurement of mutual information between

the two variables. That is, by observing one of the variables, how much information does

this provide about the other variable. The matrix of pairwise dependencies, therefore,

represents the partial-solution (building-block) structure, namely which variables should

be exchanged together. Agglomerate hierarchical clustering is used to construct a hier-

archical tree linkage-set. The clustering technique recursively combines clusters based

on their dependency strength until only a single cluster remains. The nesting of clusters

can only have a single parent and as such, creates a tree structure.

DSMGA-II The Dependency Structure Matrix Genetic Algorithm Version 2 (DSMGA-

2) Hsu and Yu (2015) uses a incremental graph linkage-set as the model. DSMGA-2

maintains a population of candidate solutions. The model is constructed from the distri-

bution of solutions selected using binary tournament selection. New solutions are gener-

ated by applying model-informed variation to all candidate solutions in the population.

The method of model-informed variation uses restricted-mixing and back-mixing. These

methods are an extension of the ideas of optimal mixing. The methods of exchange in-

formation between solutions remain the same; the linkage-set is used to determine which

variables exchange states between solutions. The subtle di�erence comes from deciding

which solutions to uses for the exchange. The process is repeated, constructing a new

model each time.

Like LTGA, the linkage set is constructed using a DSM. However, instead of using

agglomerate clustering, DSMGA-II constructs a linkage set by searching for a speci�c

sub-graph called approximation maximum-weight connected sub-graph (AMWCS). The

linkage set is, therefore, a graph structure: it is possible for a cluster to multiple parents.

P3
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A type on incremental learning - online method that continuously updates the model -

costly as many models need to be reconstructed at each iteration but very nice idea.

The parameter-less population pyramid (P3) Goldman and Punch (2014) uses multiple

incremental tree linkage-sets as the model. P3 maintains multiple populations arranged

in a hierarchy. Each level of the hierarchy can be summarised as an LTGA instance, and

thus each population has its own linkage-tree model that exploits information contained

only at the corresponding population level. What di�ers signi�cantly from any state-of-

the-art MBOA is how the populations are managed. A solution is generated one at a

time. A local search is applied to the solution to provide a solution containing variable

combinations that contribute to the solution quality. This solution is then added to the

lowest level population that does not already include this solution. When a new solution

is added to a population, the linkage-tree model, for that population, is reconstructed.

Model-informed variation is then applied to the solution to improve its quality. If the

solution is improved, it is now added to the population at the next level in the hierarchy.

If no improvement is found, then the solution is left in the population, and the algorithm

restarts with a new solution.

The model used by P3, as by LTGA, is a tree linkage-set that is constructed from a

dependency structure matrix. Therefore, the types of relationships that can be modelled

in P3 and LTGA are the same. The signi�cant di�erence between LTGA and P3 is the

use of multiple models. We hypothesis this enable P3 to solve dynamic optimisation

problems. However, we do not explore this di�erentiation in this paper.

The improvement made to a single candidate solution in the population is determined

by the diversity of alternative solutions available in the population and the genetic

operators.

A type of multi-level representation - clearer in Chapter 4

2.3.4 Summary

There is signi�cant overlap between MSS and EDAs, that is further explored in this

thesis to distinguish there capabilities. It is hypothesised that the success o� crossover,

used in GAs is due to exploiting building-block structure. The extension to EDAs

was aimed at explicitly building on this idea that identify and randomly recombining

building-blocks is a good idea. MSS explicitly search's in building-block space using a

hill-climber.

In all modelling approach's, it is evident that what makes a good model is that given

all things equal, a simpler model. This is inline with generalisation in machine learning.

Over-�tting the model will provide a good model of the training data, the solutions

used to construct the model, however a poor performance for unobserved data points
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(solutions). Therefore using the model to perform recombination will be poor, it is

desirable to have a model that can explore di�erent areas of the search spcae that has

not been visited. For this to be the case, the model must be a good model for these

unobserved data points. The advantage of using a neural network model is that we can

parameters this regularisation to improve the generalisation of the model.

Implicilty, EDAs and MSSA provide a mutli-scale representation by di�erentials in the

strengths of their connections between individual units.

The Deep Optimisation algorithm combines multi-scale search with multi-level repre-

sentation to explore the solution space.

2.4 Alternative Machine Learning Methods

Development of adaptive methods rely on identifying and exploiting the relationships

between variables that guide the search to the global optimum. The assumption made

by methods based on natural evolution is that the relationships form partial solutions,

a sub-set of variable combinations that contribute to a solutions quality regardless of

the assignment made to other variables. Therefore, the development of using automated

methods for identify and capturing these relationships using machine learning methods

is becoming increasingly more popular with application to many paradigms of search

methods

Of course, in all this, learning is fundamental component to the success of optimisation

algorithms. By learning and understanding the problem structure, we can design meth-

ods that's exploit regularities in the structure that enables search to �nd good quality

solutions in feasible time. This thesis is interested in using learning methods to improve

search in optimisation problems.

Alternative methods that use machine learning to improve optimisation include: learn-

ing a heuristic for a set of problem instances Zhang and Dietterich (2000); Khalil et al.

(2017); Bello et al. (2016); using a surrogate model to approximate the �tness func-

tion Queipo et al. (2005); Vu et al. (2017); adapting the learning function to bias future

search Hop�eld and Tank (1985); Boyan and Moore (2000); embedding a machine learn-

ing model within the model of a combinatorial problem Lombardi et al. (2017) and

using machine learning to select a suitable solver Volpato and Song (2019). The use

of deep reinforcement learning algorithms for combinatorial optimisation is a popular

approach Mazyavkina et al. (2020). Deep reinforcement learning is used to learn a policy

that performs an action on a given state to improve the solution. This policy can then

be used on multiple instances from the same problem class. Unlike DO, and in general

MBOAs, these methods don't use the model to recode the neighbourhood of a search

space.
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Machine learning used for other optimisation { branch and bound, learning heuristic {

reinforcement learning. Learning which method to use { classi�cation

2.5 Summary

Models in MSS provide a bottom up rescailing of changes made to a solution. In EDAs,

the generation is top down constraint on the degrees of freedom. LTGA provides a

multi-scale model of how to perform bottom-up or top-down MIV.

- NN models in an EDA framework doesn't show competitive results - Development has

shifted away from EDAs and towards MSS - ltga, p3 - No algorithm has used a NN, let

alone a deep NN, in the method of MSS - MSS a more natural �t for a deep representation

- Before an in depth comparison between the state-of-the-art, we introduce DO.

As far as we are aware, there does not exist an algorithm that allows for exploring the

interaction between developmental dynamics and population dynamics. In this thesis,

DO provides a single an algorithm that is capable of being used in an EDA way and

MSSA and thus providing a uni�cation of the approach's and enables us to ask additional

question related to the interactions between the two approaches.
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Searching in the Space of

Building-Blocks

Deep optimisation is an algorithmic concept that expands the functionality of Multi-

Scale Search Algorithms by using a machine learning model that has the capacity to

representing deep features - features that are recursively constructed from lower-level

features. The algorithm is based on the intuitive idea of taking a problem, decomposing

the problem into smaller sub-problems, �nding solutions to these sub-problems (features)

and recombining the solutions to solve the original problem. As identi�ed in Chapter

2. Recombination can be performed by random sampling (EDAs) or by local search in

the space of solutions to the sub-problems (MSSA). Deep Optimisation will utilise deep

learning to learn and uncover the underlying structure of the problem - providing and

autonomous decomposition of the problem.

Overcoming ruggedness implied better operator and search space design. DO seems to

�t nicely into this catergory { a hidden layer is learning a natural search space design

that represents features present in the solutions (it is likely that these features contain

good �tness bene�ts). Secondly, DO automatically designs its search operator, to that of

searching in feature space. Mapping the solution space to a new space of features that

should contain high-�tness contributions allows for both a more natural search space

and search operator.

It is important to understand the characteristics of problems that deep optimization can

solve and what other optimization algorithms, that are currently available, cannot.

This Chapter contains two components. The �rst stage is the understand the mechanism

for using the model. Speci�cally, how search in the a space of partial-solutions di�ers

(MSSA) from random combination of partial solutions (EDAs). Using a neural network

within the functionality of an EDA has provided noncompetitive results. We therefore

seek to understand how we can use the MSSA framework and a neural network. The

51
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rHN-G algorithm provides us with a foundation from which to develop deep optimisa-

tion. rHN-G uses a Hop�eld network and Hebb's rule to learn associative relationships

that are exploited to rescale the search operator. While the model capacity is weak in

comparison to other models used, it never the less is successful at using the model in

a new-way. In this Chapter, we �rst investigate how rHN-G can outperform BOA due

to the way the information in the model is exploited. Using population sizing theory,

Mills et al. (2014) showed that MSSA will �nd solutions non-additive modular prob-

lems in polynomial time, while EDAs will scale exponentially. We �rst expand on this

work and con�rm the result empirically. Then we perform a preliminary investigation

using an autoencoder model to replace the Hop�eld network used in rHN-G. We analyse

the performance and �nd that we can successful use an autoencoder model to perform

the same functionality as rHN-G by performing searching in the latent representation

of a solution computed by an autoencoder model.. Further, we show that theoretical

problems containing hierarchical problem structure can be e�ciently solved using a sin-

gle layered network, and thus conclude that their exists no theoretical problem in the

literature that contains deep problem structure. Finally, we �nd that their does exist

problem structure that rHN-G cannot represent and a neural network can, namely the

4-2-4 encoding problem . This provides su�cient preliminary results to further develop

DO as expanded on in Chapter 4 and preliminary properties of theoretical problems

required to demonstrate the performance of DO as expanded on in Chapter??

3.1 Filter and Constructive Selection

3.1.1 Introduction

In suitable domains, model-building optimisation methods can learn how to decompose

an optimisation problem into nearly-separable sub-problems withouta priori knowledge

of the underlying problem structure. Identifying such modularity aims to exploit the

familiar idea of separating a problem into smaller, simpler sub-problems, solving these

sub-problems and then re-combing these solutions to solve the original problem. This

forms the basis of the building block hypothesis where the combinations of alleles at

strongly correlated variables in the solution space are conserved during future search,

thus forming a lower dimensional structural representation of the original solution: a

building block Holland et al. (1); Goldberg (1989). The idea is that building blocks are

exchanged and combined, conserving the already-solved linkage structure at the lower

level, to solve constraints imposed at the higher level (between modules). This allows

the search process to be re-scaled from searching combination of discrete variables to

combinations of building-blocks.

The central focus of this paper is to show that using selection during the generation

of samples from the learnt model produces a signi�cant e�ciency gain over the more
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familiar use of selection which is to �lter out candidate solutions from the pool of samples

generated. To di�erentiate between these two uses of selection, we introduce the terms

of �lter selection (the conventional approach) and constructive selection:

EDAs with Filter selection: The model is used to generate complete solutions with-

out any input from selection. Selection is then used to determine whether that solution

is good enough to be used to update the model. Fig.?? illustrates this procedure.

MSSA wtih Constructive selection: The model and selection are used together to

generate solutions. Speci�cally, selection is used (within an iterative process) to assess

whether a model-informed modi�cation to a solution improves its �tness. After gener-

ating the samples the model is updated accordingly. Fig.?? illustrates this procedure.

Filter selection is the more familiar type of selection used in all genetic algorithms and

Estimation of Distribution Algorithms (EDAs). These algorithms are stochastic opti-

misation methods which replace the GA's mutation and crossover approach by building

explicit probabilistic models of �t individuals. They sample from this model to generate

new candidate solutions, evolving a population towards the optimal solution Hauschild

and Pelikan (2011). Concretely, the algorithms use the learnt model to bias the sam-

pling of solutions. To assess the performance of �lter selection we use the Bayesian

Optimisation Algorithm (BOA) due to its ability to successfully solve a wide range of

optimisation problems Pelikan et al. (2003); Aickelin et al. (2007); Santana et al. (2008).

BOA Pelikan et al. (1999) uses a sophisticated machine learning technique to automat-

ically identify the underlying structure in the problem domain. Speci�cally, it models

partial solutions probabilistically to identify a lower-dimensional model within the high-

dimensional problem space. BOA is very capable of learning the structure of a problem

given a population of samples containing a su�ciently strong signal of the underlying

structure.

BOA works by initialising a population of candidate solutions from a uniform distribu-

tion of possible solution states. The �tness of individual solutions is evaluated. Trun-

cation selection (this study used the top 50% of the population) is then applied on the

population to �lter-out promising solutions which are then used to construct the proba-

bilistic model (a Bayesian network). From the model, new solutions are generated which

replace the lowest �tness solutions in the population (this study replaced lowest 50% of

the population). This process is repeated until the termination criterion is met. BOA

is a clear example of using selection in what we term the `�lter selection' approach - i.e.

to decide which samples are retained for updating the model and selection is not used

during generation of new samples.
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(a) Filter Selection: Selection pressure is applied to �lter
out a subset of solutions from the population

(b) Constructive Selection: Selection pressure is applied
during the generation of a solution

Figure 3.1: Filter Selection applies to the group of solutions, an individual solution
is updated if it improves the groups average �tness. Constructive selection applies a
selection pressure directly to the individual solution. An individual is updated only if

the individuals �tness is improved.

Constructive selection is an idea developed in recent work by Watson and colleagues in

the development of multi-scale search algorithms (MSS). The idea has connections to

new perspectives in biological evolution. Speci�cally, the notion of `internal selection', a

key idea in the extended evolutionary synthesis Pigliucci and M•uller (2010); Laland et al.

(2015), or `developmental selection' Snell-Rood (2012) recognising the observation that

the process of development is not a ballistic unfolding of genotype into phenotype but

rather has elements of trial and error and feedback. For example, the wiring of synapses

or the paths of blood vessels involves internal context-sensitive feedbacks that adapt to

the details of the ongoing construction process as it happens. The action of selection

is not simply to �lter good phenotypes from bad, and the action of development is not

simply to decode a genotype, but the two processes are much more intimately dialectic.

MSS algorithms are a class of evolutionary optimisation methods. Whilst the funda-

mental feature of repeatedly generating candidate solutions using a model remains, the

generation of samples is adaptively and repeatedly rede�ned, using the model to cre-

ate a new (lower dimensional) search space at successively higher levels of organisation.

MACROMills et al. (2014), rHN-G Watson et al. (2011), Schema-grammar GA Cox

and Watson (2014a) and BBHC Iclanzan and Dumitrescu (2007) are examples of this

approach. Multi-scale search algorithms do not use a population of candidate solutions.

Simply they generate partial solutions probabilistically from the model and use selection

to determine if the partial solution is included into the complete sample. Whilst this is

a type of EDA it uses constructive selection not �lter selection.

In this paper, we evaluate the performance of constructive selection using the simplest

of these methods - the restart Hop�eld Network with Generative associations (rHN-G).

rHN-G uses observations of its own optimisation dynamics to identify the problem struc-

ture. Its optimisation dynamics are essentially local search (hill-climbing) that is guided

by selection, as normal, but also modi�ed by biases provided by the (initially empty)

model. The learned structure modi�es its optimisation trajectories by rede�ning the



Chapter 3 Searching in the Space of Building-Blocks 55

variation operator - e�ectively exploring a lower dimensional representation of the solu-

tion space. It thus moves from searching the original high-dimensional problem domain

to a lower-dimensional domain: transforming the dynamics to search combinations of

discrete modules instead of the original problem variables. An overview of the algorithm

is presented in section 3, for a more complete description refer to Watson et al. (2011).

We evaluate the algorithms' performance using an idealised nearly-decomposable con-

straint optimisation problem: the modular constraint (MC) problem Watson et al.

(2011). Learning the structure of this problem is easy (the modularity is not decep-

tive), and if an algorithm exploits this structure correctly (i.e. enabling it to search

combinations of modules) then the whole problem is easy. But if an algorithm cannot

use the model to achieve this, then even though it might have identi�ed the modules

correctly, it will not be able to put them together to solve the whole problem Mills

et al. (2014). This problem allows us to explore and exemplify the relative merits of

constructive and �lter selection.

This paper is not claiming that rHN-G is a better model building optimisation algorithm

than BOA - BOA is a signi�cantly more robust and general method than rHN-G. Rather,

and more speci�cally, we aim to assess the value of the constructive selection approach in

contrast to �lter selection. Both algorithms can learn the modularity of our simple test

problem successfully, but we show that the way in which the model is used, speci�cally

its interaction with selection, enables rHN-G to get much more from the model than

BOA does. We demonstrate this further by removing all the model building complexity

from the algorithms (by giving them identical models of the modularity `for free') and

evaluating their ability to generate solutions from the model correctly.

3.1.2 A Constraint Optimisation Problem with Simple Modularity

To evaluate the performance of the algorithms to solve modular constraint optimisation

problems, speci�cally the scalability of their performance as a function of module size,

we use the MC problem described by Watsonet el Watson et al. (2011). This describes

a simple `nearly-separable' modular problem with one level of hierarchy Watson et al.

(1998). The constraint problem is analogous to the natural energy minimisation of a

dynamical system; equivalent to MAXSAT and resource allocation instances?.

The solution state to the problem is S = f S1; : : : ; Si ; : : : ; SN g; whereSi 2 f� 1; 1g and N

is the size of the problem. Here an energy function encodes the constraint optimisation

problem by using a set of weights between all variables,Si , that correspond to constraints

imposed by the external environment. The �tness of a solution state is given by:

FS =
NX

ij

! ij Si Sj (3.1)
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where ! ij corresponds to the constraint between variablesi and j . Modularity can

simply be incorporated into the constraint matrix by selecting strong weights for intra-

module connections and weaker weights to describe inter-module connections. Fig 3.2 is

an example of a constraint matrix imposed on the solution state forN = 12. It is a sym-

metric modular connectivity weight matrix with n = 4 modules each of sizek = 3. One

can see that by exploiting the problem structure encoded in the constraint matrix the

dimensionality can be reduced to form a simple, easy to solve, random constraint (RC)

problem as illustrated in Fig.3.2. However, without exploiting the modular structure

the MC problem is very di�cult to solve. Given that the inter-module constraints are

small in contrast to the intra-module constraints creates local optima that correspond

to S = f Sk ; � Skgn For example, the state con�guration S = (1 3; 13; 13; 13) is a local

optimum on the �tness landscape for the MC problem in Fig. 3.2. The global optima

would be S = (1 3; � 13; 13; � 13) or its compliment.

Figure 3.2: A small example of the modular constraint (MC) problem (left) and
equivalent macro-scale representation random constraint problem (right).

Fig. 3.3 shows the �tness landscape that corresponds to an MC (problem ofN = 100),

where the extremes of thex-axis denote the global optima. A local search algorithm

that cannot exploit the problem structure will get trapped in the local optima. In the

attempt to satisfy an inter-module constraint, it will cause a reduction in the �tness due

to violating the larger intra-module constraints imposed on the state variable.

With this problem de�nition, we can create an idealised nearly-decomposable constraint

optimisation problem which has clear structure that can be controlled. This allows us to

draw direct comparison between the algorithms and focus on evaluating the performance

and sensitivities to modularity

For the experiment, we use a MC problem where the number of modules remains constant

(n = 10) and only the size of the module (k) is varied (N = 10k). The results and

evaluated time complexity required for the algorithm to solve the problem are therefore

only in reference to the size of the modules. For all problems, the intra-module constraint
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strengths are set to 1 and the inter-module constraint strength (p) are set to 1x10� 6

(this is a known value that creates an MC problem that is pathologically di�cult for a

hill-climber Mills (2010). The inter-module weights between di�erent modules vary only

by their sign, acting to attract (same sign) or repel (opposite sign) each other. These

are speci�cally chosen to produce a global optimum with alternating module solutions,

i.e. S = (1 k ; � 1k ; 1k ; � 1k ; 1k ; � 1k ; 1k ; � 1k ; 1k ; � 1k ) or its compliment. The extreme

imbalance between intra-module and inter-module weights means that the basins of

attraction for each local optimum in the high-dimensional problem are almost equal;

revealing almost no inter-module correlations. A single run with a hill-climber will be

no more likely to �nd the global optimum than any other local optimum. However,

in principle, an algorithm that is able to learn and properly exploit knowledge of the

modular structure has potential to `hill-climb' in the space of module combinations,

following the relatively weak inter-module �tness gradients to locate a global optimum.

Figure 3.3: A small example of the �tness landscape cross-section for an MC problem,
with n = 10, k = 10 and p = 0 :01. In this illustrative example, we can see that intra-
module constraints create many local optima and inter-module constraints create a
relatively weak gradient at a macro scale. This macro scale gradient can be used to hop
from one local optimum to another, and hence �nd the global optimum, if and only if

the algorithm can utilise its model on the modular structure appropriately.

3.1.3 Methods

Learning and exploiting the modular structure of the problem domain is fundamental

to solving the MC problem. Whilst there exist sophisticated algorithms for learning the

problem structure without prior knowledge, we argue, that by using selection within

the process that generates samples from the model it is possible to exploit the learnt

information in the model in a more e�cient manner.

3.1.3.1 BOA Parameters

Here the threshold termination criterion of 95% is used to determine when BOA stops the

iterative process. Assuming that a global optimum was found, this termination criterion

means that using the model and sampling from it would produce a global optimum 95%
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of the time. Alternatively, from an evolutionary view point, the population contains at

least 95% of globally optimal solutions. To determine the time-complexity for BOA in

relation to the module size only the number of �tness evaluations are counted to reach

the termination criterion (i.e. model induction is assumed to be `free' for the purposes of

this study). A pre-experiment study was used to �nd the minimum population size for

BOA that �nds the global optimum at least 50% of the time. This provides a `generous'

measure of the minimum number of �tness evaluations required for BOA to solve the

problem. Only the successful runs of BOA are used to formulate the distribution of

�tness evaluations required to solve the problem (hence consisting of 50 samples for

each test data point).

3.1.3.2 rHN-G

By restarting the candidate solution from a uniform random distribution enables to

search

The time-complexity of rHN-G in relation to the module size is measured as the number

of �tness evaluations required to (build a model that can) reliably produce the global

optimum. Reliably is de�ned here as being able to produce the global optima at least

95% of the time when given a random solution string. As with BOA, 50 repeats are

performed to produce a distribution of the total number of �tness function evaluations

required to solve the MC problem. This is a product of the number of iterations for each

constructive selection process and the number of solution restarts performed (training

examples used). The number of steps (iterations) per a constructive selection process

was not optimised here, and instead 10N is used as done by Watson et al. (2011). All the

�tness evaluations used within the generation of the sample are counted in the �tness

evaluations reported. Furthermore, the learning rate was not optimised for di�erent

k values and was kept constant at 0.0002. The optimisation of these parameters was

not necessary - although this would reduce the total number of �tness evaluations, the

e�ciency gain by using constructive selection would still be dominant.

As rHN-G updates a single solution during optimisation, it allows us to measure the

e�ect of the model on optimisation directly. Where as in BOA, the e�ect of the model

is at the population level.

At the initial stages of rHN-G, when the model has negligible information about the

problem structure, the constraints between the bu idling-blocks are ignored in favour

of satisfying the higher-rewarding intra-module constraints, Figure: Figure ??. Indeed,

when no learning is applied we see that rHN-G is provides a distribution of local optimal

solutions, but is unable able to �nd the global optimum solution.

- How does rHN-G work - change in the weights as optimisation is performed.
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(a) Energy state of solutions found using only single-bit
substitution (no learning)

(b) Trajectory of 10 independent solutions that use only
a single-bit substitution.

Figure 3.4: Energy state of solutions found using with learning

Figure 3.5: Average number of �tness evaluations required to solve the MC problem,
sizeN = 10k. The error-bar shows the range of values from the test distribution. The
solid lines are trend lines calculated from the average data points, BOA results use an

exponential �t and the rHN-G result uses a linear �t.

3.1.4 Results and Discussion

Experiments to calculate the number of �tness evaluations required to solve the problem

for di�erent size modules is conducted. For BOA, we also present results using various

model complexities for the Bayesian network. This is to further highlight that the dif-

ference between the algorithm's performance is in how selection is used when generating

candidate solutions. The complexity is controlled by parameter MaxIn which limits the

maximum number of incoming edges into a node of the Bayesian network.

Fig. 3.6 presents the average number of �tness evaluations required to solve the MC
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